
Supplementary Material

CTAB@BiOCl: a highly adsorptive photocatalyst for

eliminating dyes contamination

Yichang Yua, Zhangjun Hub, Yalei Zhanga, Hongwen Gaoa*

Figures S1 – S3 and Table S1 - S2

Fig.S1 The repeated experiments in the photocatalytic degradation of 20 mg/L X3B in the presence of CTAB@BiOCl under UV light irradiation

^a State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China

^b Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden

^{*}Corresponding authors: hwgao@tongji.edu.cn (H. W. Gao)

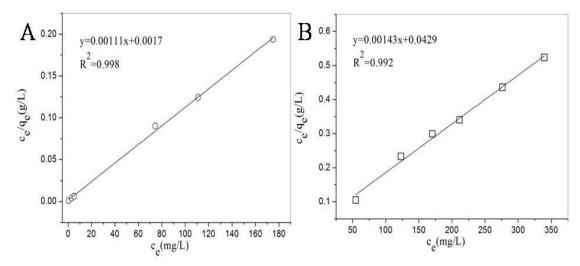


Fig.S2 Langmuir isotherm model of CR (A) and X3B (B)

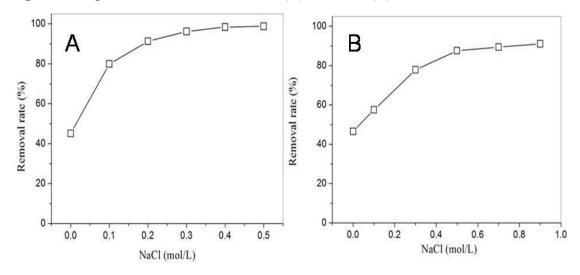


Fig.S3 Effect of ionic strength on the adsorption of CR(A) and X3B(B)

Table S1 Change of C, N and H contents in CTAB @ BiOCl by UV photocatalysis

	 	1	
Number of use	N (%)	C (%)	H (%)
0	1.47	26.64	5.04
1	1.37	16.13	3.82
3	0.44	2.1	1.94
5	0	1.155	0.728

Table S2 The change of ξ -potentials before and after adsorption reaction

Material	CTAB	0.1mm CR	After adsorption	0.6mm CR	After adsorption
	@ BiOCl	solution	of 0.1mm CR solution	solution	of 0.6mm CR solution
mV	41	-25.4	26.6	-32.4	-3.31