Supporting Information

Core-spacer-shell Structured NaGdF₄: Yb³⁺/Er³⁺@NaGdF₄@Ag

Nanoparticles for Plasmon-enhanced Upconversion

Luminescence

Xindan Zhang^[a,b], Bin Li^{*[a]}, Mingming Jiang^[a], Liming Zhang^[a], Heping Ma^[a]

^[a] State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China

^[b] University of Chinese Academy of Sciences, Beijing 100049, PR China.

^{*}Corresponding author. Tel./fax: +86431 86176935. E-mail address: libinteacher@163.com (B. Li)

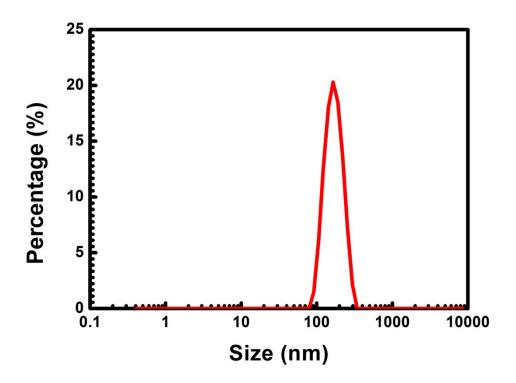


Figure S1. Dynamic light scattering measurements (DLS) of core-spacer-shell UCNPs in deionized water.

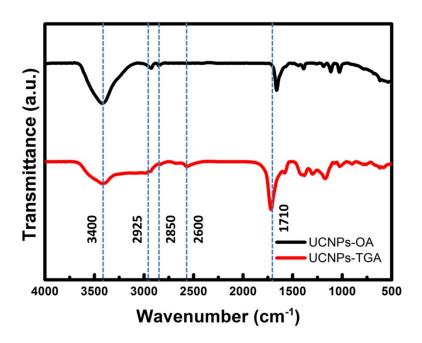


Figure S2. FT-IR spectra of UCNPs-OA (black line) and UCNPs-TGA (red line).

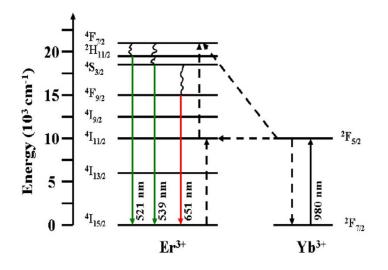


Figure S3. Energy diagram and simplified mechanism for energy-transfer upconversion between Yb^{3+} and Er^{3+} .

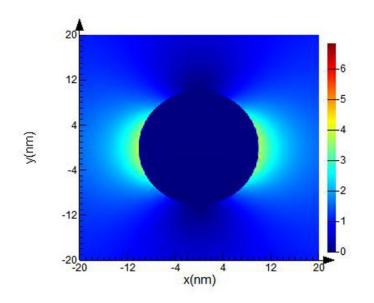


Figure S4. FDTD simulations of electric field intensity enhancement at 980 nm a single of core–spacer-shell structured UCNPs model: a 14 nm NaGdF₄ core (n = 1.29), with a 1.75 nm NaGdF₄ spacer layer (n = 1.29) and a 1.5 nm Ag shell (n = 0.20), color bar indicates E/E_0 .

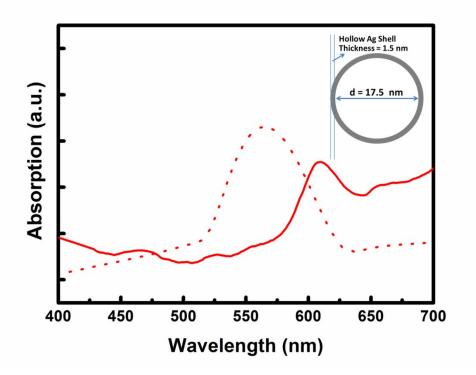


Figure S5. Dotted line: FDTD simulated absorption of a hollow Ag shell, inset is the picture of hollow Ag shell; Solid line: absorption of core-spacer-shell UCNPs.