

Fig. S1. The composite in the absence (left) and presence (right) of an external magnetic field



Fig. S2. (a) EDS of La-Zr magnetic composite; (b) EDS of La-Zr magnetic composite dried at  $60^{\circ}$ C after adsorbed 300 mg/L F<sup>-</sup>.



Fig. S3. Comparison between the measured and Lan-Fre isotherm modeled profiles of  $ZrO(OH)_2$ ,  $La_2(C_2O_4)_3 \cdot 10 H_2O$  and  $Fe_3O_4@SiO_2$ .

 $ZrO(OH)_2$  was prepared with the same preparation method of La-Zr composite without adding Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and La(NO<sub>3</sub>)<sub>3</sub>; La<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub> • 10 H<sub>2</sub>O was prepared with the same preparation method of La-Zr composite without adding Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, ZrOCl<sub>2</sub> •8H<sub>2</sub>O and NH<sub>3</sub>• H<sub>2</sub>O.

Adsorption isotherms were studied in the same conditions as La-Zr composite. The data fitting to Lan-Fra isotherm model are shown in Fig. S3. Regression coefficient ( $R^2$ ) of ZrO(OH)<sub>2</sub> is 0.9655, and the maximum calculated sorption capacity is 46.50 g/mg; Regression coefficient ( $R^2$ ) of La<sub>2</sub>( $C_2O_4$ )<sub>3</sub> • 10 H<sub>2</sub>O is 0.9604, and the maximum calculated sorption capacity is 161.95 g/mg; The data of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> can not be fitted to Lan-Fre model, and can not be fitted to Langmuir or Fredunlich models as well. The adsorption capacity of the composite is considered mainly comes from La<sub>2</sub>( $C_2O_4$ )<sub>3</sub> • 10 H<sub>2</sub>O due to its high adsorption capacity toward F<sup>-</sup>. But it is too expensive to use bare La compound as adsorbent since La is a rare earth element.

expensive to use bare La compound as adsorbent since La is a rare earth element.  $ZrO(OH)_2$  is a chemically inert and highly biocompatible material with low cost <sup>1-4</sup>. Furthermore, one can see from Fig. S3 it has medium adsorption capacity toward F<sup>-</sup>. Consequently, it is an ideal component used to compose with La compound to cheapen the adsorbent while retain high adsorption ability. In addition, biocompatibility of  $ZrO(OH)_2$  will significantly decrease the second contamination to environment, even if the composite were ineffectively recovered after used as adsorbent <sup>1-2</sup>. Adsorption ability of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> is too low to make any sense for

adsorbing F<sup>-</sup> in the composite. Its function is to endow magnetism to the composite facilitating operation.

Table S2 Comparison the La-Zr composite with two other reported adsorbents with better adsorption records

| Adsorbent | Preparation                                      | The        | Best fitted | Best fitted   | Reference   |
|-----------|--------------------------------------------------|------------|-------------|---------------|-------------|
|           | method                                           | maximum    | isotherm    | kinetic model |             |
|           |                                                  | adsorption | model       |               |             |
|           |                                                  | ability    |             |               |             |
|           |                                                  | (mg/g)     |             |               |             |
| La-Zr     | Co-precipitated                                  | 88.5       | Lan-Fre     | Pseudo-       | This study  |
| composite | $La_2(C_2O_4)_3$ and                             |            | isotherm    | second-order  |             |
|           | $ZrO(OH)_2$ at the                               |            | model       | kinetic model |             |
|           | presence of nano                                 |            |             |               |             |
|           | Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> |            |             |               |             |
| Nano      | synthesized Zr                                   | 96.58      | Langmuir    | Pseudo-       | J. Hazard.  |
| zirconium | nanoparticles                                    |            | isotherm    | second order  | Mater., 276 |
| chitosan  | using aqueous                                    |            | model       | model         | (2014) 232- |
| composite | extract of                                       |            |             |               | 240         |
|           | Aloevera, and                                    |            |             |               |             |
|           | then omposed it                                  |            |             |               |             |
|           | with chitosan by                                 |            |             |               |             |
|           | embedding.                                       |            |             |               |             |
| Calcined  | Calcined MgAl-                                   | 141.64     | No study    | pseudo-       | Ind. Eng.   |
| MgAl-CO3  | CO3 layered                                      |            |             | second-order  | Chem. Res.  |
| LDHs      | double                                           |            |             | kinetic model | 2006, 45,   |
|           | hydroxides at                                    |            |             |               | 8623-8628   |
|           | 500 °C for 2 h.                                  |            |             |               |             |

The preparation scheme of the composite adsorbent



## Reference

- Hualin Jiang, Pinghua Chen, Shenglian Luo et al., Synthesis of novel nanocomposite Fe<sub>3</sub>O<sub>4</sub>/ZrO<sub>2</sub>/chitosan and its application for removal of nitrate and phosphate, Appl. Surf. Sci. 2013, 284: 942-949;
- Hualin Jiang, Pinghua Chen, Shenglian Luo et al., Synthesis of Novel Biocompatible Composite Fe<sub>3</sub>O<sub>4</sub>/ZrO<sub>2</sub>/ Chitosan and Its Application for Dye Removal, J. Inorg. Organomet. Polym. 2013, 23:393-400;
- L. Kljajevi ' c, B. Matovi' c, A. Radosavljevi'c-Mihajlovi' c, et al., Preparation of ZrO<sub>2</sub> and ZrO<sub>2</sub>/SiC powders by carbothermal reduction of ZrSiO<sub>4</sub>, J. Alloy. Compd. 2011, 509: 2203-2215;
- A. Wael, Y. Nao-Daniel, W. Martin, S. Witkowski, et al., Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments, Clin. Implant Dent. R. 2012, 14: 196-203.