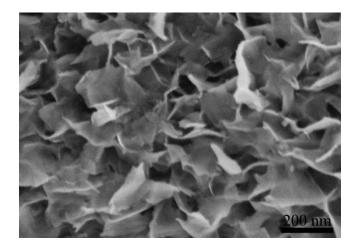
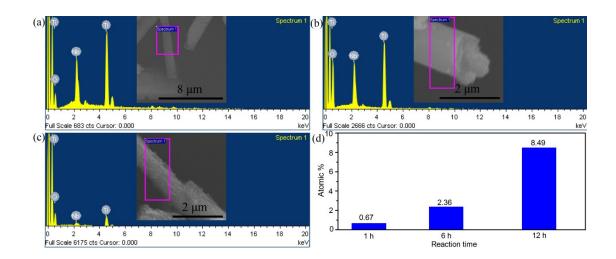
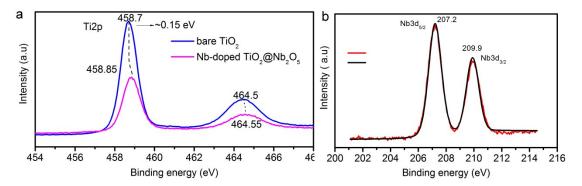
Supporting Information

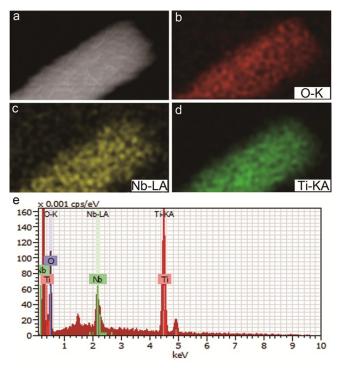
Xiao Yu,^a Ling Xin,^{a,c} Yong Liu,^{*c} Wenxia Zhao,^b Baojun Li,^c Xiang Zhou^c and Hui Shen^a

^aInstitute for Solar Energy Systems, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

^bInstrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China. ^cSchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China. *E-mail: liuyong7@mail.sysu.edu.cn*


Fig. S1 High-magnification FESEM images of Nb_2O_5 nanosheets in the Nb-doped $TiO_2@Nb_2O_5$ sample.


Fig. S2 FESEM of bare TiO_2 rods.

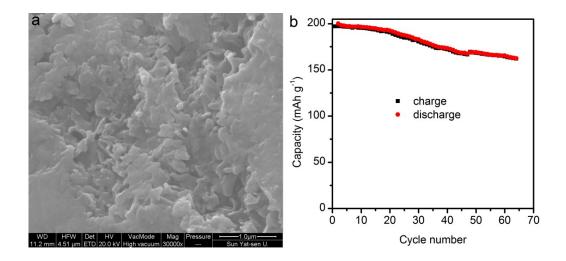

Fig. S3 The time-dependent EDX spectrum of Nb-doped $TiO_2@Nb_2O_5$ heterostructures that obtained by hydrothermal treatment at 150 °C for (a) 1 h, (b) 6 h, and (c) 12 h, respectively. (d) Histogram of Nb dopant concentration in above samples with different reaction time.

Fig. S4 (a) High-resolution Ti 2p spectra of bare TiO_2 and Nb-doped $TiO_2@Nb_2O_5$, showing a ca. 0.15 eV shift to higher binding energy, (b) Nb $3d_{5/2}$ XPS spectra of Nb-doped $TiO_2@Nb_2O_5$ coreshell heterostructures.

Fig. S5 Images of elemental mapping and the EDS spectrum of Nb-doped $TiO_2@Nb_2O_5$ core-shell heterostructures by SEM mapping analysis. All the elements (O, Ti and Nb) are homogeneously distributed in the Nb-doped $TiO_2@Nb_2O_5$ core-shell heterostructures as shown in the upper images and the EDS spectrum shows the presence of O, Ti and Nb elements.

Fig. S6 (a) The Nb₂O₅ nanosheet aggregates produced without the addition of Ti precursor; (b) the cycling performance of bare Nb₂O₅ electrodes.

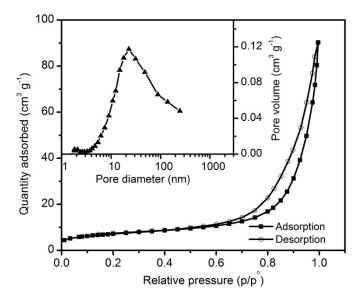


Fig. S7 Nitrogen adsorption-desorption isotherms for Nb-doped $TiO_2@Nb_2O_5$ core-shell heterostructures. Inset shows the corresponding pore size distribution.

Table S1 Resultant values of equivalent circuit for both the Nb-doped $TiO_2@Nb_2O_5$ and bare TiO_2 nanorod electrodes after and before cycle.						
samples	$\begin{array}{c} R_e\!/\Omega \\ (before) \end{array}$	$\begin{array}{c} R_b / \Omega \\ (before) \end{array}$	$\begin{array}{c} R_{sf+ct}\!/\Omega \\ (before) \end{array}$	Re/Ω (after)	Rb/Ω (after)	$\begin{array}{c} R_{sf+ct}\!/\Omega \\ (after) \end{array}$
Nb-doped TiO ₂ @Nb ₂ O ₅	3.1	14.8	8.2	3	4.4	4.1
bare TiO ₂	3.7	25.1	21.7	3.5	17.7	14.3