Gelatin Assisted Wet Chemistry Synthesis of High Quality 8-FeOOH

Nanorods Anchored on Graphene Nanosheets with Superior

Lithium-ion Battery Application⁺

Xinyu Zhang and Yaping Du*

Fig. S1 (a) SEM image of the β -FeOOH nanorods; (b) Length and (c) Diameter distribution histogram of the β -FeOOH nanorods.

Fig. S2 TEM image of pure graphene oxides (GO).

Fig. S3 (a) FTIR and (b) Raman spectra of β -FeOOH nanorods and β -FeOOH/rGO hybrid nanostructures.

Fig. S4 Electrochemical performance of pure β -FeOOH nanorods for lithium ion battery application. (a) CV curves at a scan rate of 0.50 mV/s; (b) Charge/discharge curves cycling at a current density of 0.10 A/g; (c) Cycling performance at a current density of 0.10 A/g; (d) Rate ability at different current densities.

Fig. S5 Nitrogen adsorption-desorption isotherm for β -FeOOH/rGO hybrid nanostructures. The surface area for β -FeOOH/rGO is calculated to ~88.48 m²/g.

Fig. S6 TEM image of the β -FeOOH/rGO sample after 100 cycles at 0.1 A/g.