CHEMICAL SELECTIVITY OF NUCLEOBASE ADDUCTION RELATIVE TO IN VIVO

MUTATION SITES ON EXON 7 FRAGMENT OF P53 TUMOR SUPPRESSOR GENE

Spundana Malla, Karteek Kadimisetty, You-Jun Fu, Dharamainder Choudhary, Ingela Jansson, John B. Schenkman, James F. Rusling^{*}

SUPPORTING INFORMATION

Figure S1. Isotopic distribution pattern for ss-DNA Fragment 1, m/z 1540.5 z=-2, measured on a Qtrap mass spectrometer

Table S1: Calculated multiple charged species for standard and single adducted ss-Fragment 1.

ss-Fragment 1 : GGCGGCATG			
Charge	m/z		
	Standard	Singly Adducted	
-1	2778.854	3081.177	
-2	1388.923	1540.084	
-3	925.612	1026.386	
-4	693.957	769.538	
-5	554.964	615.429	
-6	462.302	512.689	
-7	396.115	439.304	
-8	346.474	384.264	

Singly adducted ss-DNA Fragment 4 has m/z of 1480.2 with a charge of -2. Extracted ion chromatogram (XIC) of 1480.2 is as shown in Figure S2A. XIC of 1480.2 showed three major peaks indicating that there are three major adducts on ss-DNA Fragment 4, the complement of fragment 1. MSMS spectra for singly adducted ss-DNA Fragment 4, m/z 1480.2 is as shown in Figure S2B for Peak 1. All a_n - b_n ions up to a_3 - b_3 have m/z similar to that of standard. Increase in m/z was observed for a_4 - b_4 , a_5 - b_5 and a_6 - b_6 . This indicates that the possible modification is on base 3, (CCG*CCCATG). This was further confirmed with w_n ions. Increase in m/z for w_7 and w_8 ions and all ions below w_6 have m/z similar to that of standard. Table S2 shows the m/z for standard and adducted ss-DNA Fragment 4.

MSMS spectra for singly adducted ss-DNA Fragment 4, m/z 1480.2 is as shown in Figure S2C for Peak 2. All a_n - b_n ions up to a_7 - b_7 have m/z similar to that of standard. Increase in m/z was observed for a_8 - b_8 . This indicates that the possible modification is on base 7, (CCGCCCA*TG). This was further confirmed with w_n ions. Increase in m/z for w_3 , w_4 , w_5 , w_6 , w_7 and w_8 ions and ions w_1 and w_2

have m/z similar to that of standard. Table S2 shows the m/z for standard and adducted ss-DNA Fragment 4.

MSMS spectra for singly adducted ss-DNA Fragment 4, m/z 1480.2 is as shown in Figure S2D for Peak 3. All a_n - b_n ions have m/z similar to that of standard. This indicates that the possible modification is on base 9, (CCGCCCATG*). This was further confirmed with w_n ions showing increase in m/z for all w_n ions. Table S2 shows the m/z for standard and adducted fragment 4.

Figure S2. LC-MS/MS of Fragment 4 SS (A) Extracted ion chromatogram of singly adducted ss Fragment 4 fragment with m/z 1480.2. (B) MSMS spectra of Peak 1 (C) MSMS spectra of Peak 2 (D) MSMS spectra of Peak 3 showing the obtained a_n-b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red.

Table S2: Calculated m/z for standard and singly adducted DNA fragments of ss-DNA Fragment 4. (m/z highlighted in red were the ions with increased m/z compared to that of standard corresponding to BPDE adducted)

Eroomont	m/z			
Flagment	Standard	Peak1	Peak 2	Peak 3
a ₂ -b ₂	[386.2] ⁻	$[426.2]^{-1}$	[386.2] ⁻	[386.2] ⁻
a ₃ -b ₃	[675.4] ⁻	[675.4] ⁻	[675.4] ⁻	[675.4] ⁻
a ₄ -b ₄	[1004.4]	[1306.6] ⁻	[1004.4]	$[1004.4]^{-}$
a ₅ -b ₅	[1293.8]-	[1595.6] ⁻	[1293.8]-	[1293.8] ⁻
a ₆ -b ₆	[1583.0]-	[1885.5] ⁻	[1582.5] ⁻	[1582.6] ⁻
a ₇ -b ₇	[1872.2] ⁻²	n/d	n/d	[934.5] ⁻²
a ₈ -b ₈	[1092.2] ⁻²	n/d	[1244.7] ⁻²	n/d
w ₁	[346.2]-2	[346.2]-2	[346.2]-2	[648.23]-
w ₂	[650.4] ⁻	[650.3] ⁻	[650.3] ⁻	[952.4] ⁻
w ₃	[963.6] ⁻	[963.4] ⁻	[1265.5]-	[1265.6] ⁻²
W4	[1252.8] ⁻	[1252.5] ⁻	[1555.5] ⁻	[1554.6]-
W ₅	[1541.9] ⁻	[1542.9] ⁻	[1844.7] ⁻	[1843.8]-
W ₆	[1831.2] ⁻	[915.0] ⁻²	[1066.6] ⁻²	[1066.6] ⁻²
w ₇	[1079.7] ⁻²	[1230.9]-2	[1231.1]-2	[1231.0] ⁻²
W ₈	[1224.3] ⁻²	[1375.7] ⁻²	[1375.6] ⁻²	[1375.5] ⁻²

Singly adducted fragment of ss-DNA Fragment 2 has an m/z of 1511.0 with a charge of -4. Extracted ion chromatogram of 1511.0 is as shown in Figure S3A. XIC of 1511.0 show one major peak indicating that there is one major adduct on ss-DNA Fragment 2.

Figure S3. LC-MS/MS of ss-DNA fragment 2 (A) Extracted ion chromatogram of singly adducted ss-DNA Fragment 2 fragment, m/z 1511.0.

(B) MSMS spectra of fragment ion 1511.0 showing the obtained a_n - b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red. MSMS spectra for singly adducted ss-DNA Fragment 2, m/z 1511.0 is as shown in Figure S3B. All a_n - b_n ions up to a_9 - b_9 have m/z similar to that of standard. Increase in m/z was observed for a_{10} - b_{10} . This indicates that the possible modification is on base 9, (AACCGGAGG*CCCATCCTCA). This was further confirmed with w_n ions. Increase in m/z for w_{11} , w_{12} , and w_{13} ions and ions below w_{10} have m/z similar to that of standard. Table S3 shows the m/z for standard and adducted ss-DNA Fragment 2.

Table S3: Calculated m/z for standard and singly adducted DNA fragments of ss-DNA Fragment 2. (m/z highlighted in red were the ions with increased m/z compared to that of standard corresponding to BPDE adducted)

Engmont Ion	m/z		
Fragment Ion	Standard	Singly adducted	
a ₇ -b ₇	[979.4] ⁻²	[979.4] ⁻²	
a ₈ -b ₈	[1136.1] ⁻²	[1136.1]-2	
a ₉ -b ₉	[1301.0] ⁻²	[1301.0] ⁻²	
a ₁₀ -b ₁₀	[1465.5] ⁻²	[1616.7] ⁻²	
a ₁₁ -b ₁₁	[1073.0] ⁻³	[1761.4] ⁻²	
a ₁₂ -b ₁₂	[1169.4] ⁻³	[1906.2] ⁻²	
w ₈	[1204.4] ⁻²	[1204.4] ⁻²	
w ₉	[1349.1] ⁻²	[1349.1] ⁻²	
w ₁₀	[1492.9] ⁻²	[1493.2]-2	
w ₁₁	[1657.5] ⁻²	[1808.8] ⁻²	
w ₁₂	[1214.4] -3	[1973.4] ⁻²	

Figure S4. LC-MS/MS of ss-DNA Fragment 3 (A) Extracted ion chromatogram of singly adducted ss-DNA Fragment 3, m/z 1935.5. (B) MSMS spectra of fragment ion of m/z, 1935.5 charge -4 showing the obtained an b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red.

Singly adducted ss-DNA Fragment 3 has m/z of 1935.5 with a charge of -4. Extracted ion chromatogram of 1935.5 is as shown in figure S4A. XIC of 1935.5 show one major peak indicating that there is one major adduct on ss-DNA Fragment 4.

MSMS spectra for singly adducted ss-DNA Fragment 3, m/z 1935.5 is as shown in Figure S4B. Increase in m/z for w_n ions w_{20} , w_{21} , w_{22} and w_{23} indicate that the modification is on 5th base (GTGAG*GATGGGCCTCCGGTTCATG).

5' END

OH 3' END

32 base pair DNA DATA

Scheme S1. A) Protocol for reaction of 32 base pairs DNA fragment with BPDE followed by restriction enzyme treatment and possible fragments. B) Example of bond breaking between O and P if restriction enzyme acts between G and A.

Table S4: Calculated m/z for standard and singly adducted DNA fragments obtained after restriction enzyme treatment of 32 base pair DNA (A) Fragment 1 (B) Fragment 2 (C) Fragment 3 (D) Fragment 4. m/z highlighted in red were the ions detected in MS spectrum.

(A) Fragment 1			(B) Fragment 2		
5'-CATGGGCGGCATG-OH		P-,	P-AACCGGAGGCCCATCCTCA-OH		
Charge	Standard	Single adducted	Charge	Standard	Single adducted
-1	4014.656	4316.979	1	F001 771	6124 004
-2	2006.824	2157.986	-1	2010 281	3061 5/3
-3	1337.546	1438.320	-2	1939.918	2040.692
-4	1002.908	1078.489	-4	1454.686	1530.267
-5	802.124	862.589	-5	1163.547	1224.012
Charges up to -12 are possible only few		Charg	Charges up to -18 are possible only few		
shown here			shown here		
			(D) Erograd	ant 1	
(C) Fragment 3					
OH-GTACTTGGCCTCCGGGTAGGAGT-OH			OH-GTACCC	GCC-P	
Charge	Standard	Single adducted	Charge	Standard	Single adducted
-1	7110.654	7412.977	-1	2738.759	3041.082
-2	3554.823	3705.985	-2	2 1368.875	1520.037
-3	2369.546	2470.320	-:	912.247	1013.021
-4	1776.907	1852.488	-4	683.933	759.514
-5	1421.324	1481.789	Charges	Charges up to -8 are possible only few shown	
-6	1184.269	1234.656	here		

Figure S5. LC-MS of ds-32 bp exon 7 probe: (A) Extracted ion chromatogram of singly adducted fragment 1, m/z 1438.2. (B) MSMS spectra of Peak 1 (C) MSMS spectra of Peak 2 showing the obtained a_n - b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red.

Singly adducted fragment 1 has an m/z of 1438.2 with a charge of -3. Extracted ion chromatogram of 1438.2 is shown in Figure S6A. XIC of 1223.8 show two major peaks indicating that there are two major adduct on Fragment 1.

MSMS spectra for singly adducted Fragment 1, m/z 1438.2 is as shown in Figure S6B for Peak 1. All a_n-b_n ions up to a_5-b_5 have m/z similar to that of standard. Increase in m/z was observed for a_6-b_6 , a_7-b_7 , a_8-b_8 . This indicates that the possible modification is on base 5, (CATGG*GCGGCATG). This was further confirmed with w_n ions. Increase in m/z for w_9 and w_{10} ions and all ions below w_8 have m/z similar to that of standard. Table showing the m/z for standard and adducted Fragment 1 is as shown in Table S5.

MSMS spectra for singly adducted Fragment 1, m/z 1438.2 is as shown in Figure S6C for Peak 2. All a_n - b_n ions up to a_5 - b_5 have m/z similar to that of standard. Increase in m/z was observed for a_5 - b_5 , a_6 - b_6 , a_7 - b_7 and a_8 - b_8 . This indicates that the possible modification is on base 4, (CATG*GGCGGCATG). This was further confirmed with w_n ions. Increase in m/z for w_{10} ion and all ions below w_9 have m/z similar to that of standard. Table showing the m/z for standard and adducted Fragment 1 is as shown in Table S5.

Fragment ion	m/z			
Flagment ion	Unadducted	Peak 1	Peak 2	
a ₄ -b ₄	[1003.4]	$[1003.4]^{-}$	$[1003.4]^{-}$	
a ₅ -b ₅	[1332.5] ⁻	[1332.5] ⁻	[1634.7] ⁻	
a ₆ -b ₆	[1661.6] ⁻	[1963.7] ⁻	[1963.7] ⁻	
a ₇ -b ₇	$[995.2]^{-2}$	[1145.9] ⁻²	[1145.9] ⁻²	
a ₈ -b ₈	[1139.5] ⁻²	[1290.5] ⁻²	[1290.5] ⁻²	
a ₉ -b ₉	[1304.1] ⁻²	[1455.7] ⁻²	[1455.1] ⁻²	
a ₁₀ -b ₁₀	$[1468.5]^{-2}$	[1619.6] ⁻²	[1619.6] ⁻²	
W2	$[650.2]^{-}$	[650.2] ⁻	$[650.2]^{-}$	
W3	[963.3] ⁻	[963.3] ⁻	[963.3] ⁻	
W4	$[1252.5]^{-}$	[1252.5] ⁻	$[1252.5]^{-1}$	
W 5	n/d	n/d	n/d	
W6	$[954.8]^{-2}$	[954.8] ⁻²	[954.8] ⁻²	
W 7	$[1099.4]^{-2}$	$[1099.4]^{-2}$	$[1099.4]^{-2}$	
W8	$[1263.9]^{-2}$	$[1263.9]^{-2}$	$[1263.9]^{-2}$	
W9	[1428.7] ⁻²	[1581.5] ⁻²	[1428.5] ⁻²	
W10	[1593.3] ⁻²	[1745.4] ⁻²	[1163.1] ⁻³	

Table S5. Calculated m/z for standard and singly adducted DNA Fragment 1. (m/z highlighted in red were the ions with increased m/z compared to that of standard corresponding to BPDE adducted)

Figure S6. LC-MS of ds-32 bp exon 7 probe: (A) Extracted ion chromatogram of singly adducted Fragment 4, m/z 1012.6. (B) MSMS spectra of m/z 1012.6 showing the obtained a_n - b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red

Singly adducted Fragment 4 has an m/z of 1012.6 with a charge of -3. Extracted ion chromatogram of 1012.6 is as shown in Figure S7A. XIC of 1012.6 show one major peak indicating that there is one major adduct on Fragment 4.

MSMS spectra for singly adducted Fragment 4, m/z 1012.6 is as shown in Figure S7B. All a_n - b_n ions up to a_3 - b_3 have m/z similar to that of standard. Increase in m/z was observed for a_4 - b_4 , a_5 - b_5 , a_6 - b_6 , a_7 - b_7 and a_8 - b_8 . This indicates that the possible modification is on base 3, (CCG*CCCATG). This was further confirmed with w_n ions. Increase in m/z for w_7 ion and all ions below w_6 have m/z similar to that of standard and adducted Fragment 4 is as shown in Table S6.

Fragment ion	m/z		
	Unadducted	Singly Adducted	
a ₂ -b ₂	$[466.1]^{-1}$	[466.1] ⁻	
a ₃ -b ₃	[755.2] ⁻	[755.2]-	
a ₄ -b ₄	$[1084.8]^{-}$	[1386.4] ⁻	
a ₅ -b ₅	[1373.8] ⁻	[837.2] ⁻²	
a ₆ -b ₆	[1663.0] ⁻	[981.8] ⁻²	
a ₇ -b ₇	[975.6] ⁻²	[1126.3] ⁻²	
a ₈ -b ₈	[1132.2] ⁻²	n/d	
W2	$[650.2]^{-}$	[650.2] ⁻	
W3	[963.3] ⁻	[963.3] ⁻	
W4	$[1252.5]^{-1}$	[1252.3]-	
W5	[1541.7] ⁻	[770.2] ⁻²	
W ₆	[915.1] ⁻²	[914.8] ⁻²	
W7	$[1079.4]^{-2}$	[1230.9] ⁻²	

Table S6. Calculated m/z for standard and singly adducted Fragment 4. (m/z highlighted in red were the ions with increased m/z compared to that of standard corresponding to BPDE adducted)

Figure S7. LC-MS of ds-32 bp exon 7 probe: (A) Extracted ion chromatogram of singly adducted Fragment 3, m/z 1234.4 (B) MSMS spectra of fragment ion m/z, 1234.4 showing the obtained a_n - b_n and w_n ions. Ions with m/z similar to standard are shown in green and ions with increased m/z shown in red Singly adducted Fragment 3 has an m/z of 1234.4 with a charge of -6. Extracted ion chromatogram of 1234.4 is as shown in Figure S8A. XIC of 1012.6 show one major peak indicating that there is one major adduct on Fragment 3. MSMS spectra for singly adducted Fragment 3, m/z 1234.4 is as shown in Figure S8B. All a_n - b_n ions up to a_5 - b_5 have m/z similar to that of standard. Increase in m/z was observed for a_6 - b_6 , a_7 - b_7 and a_8 - b_8 and w_{19} . This indicates that the possible modification is on base 5, (TGAGG*ATGGGCCTCCGGTTCATG). Table showing the m/z for standard and adducted Fragment 4 is as shown in Table S7.

ucicu)			
Errogmontion	m/z		
Flagment ion	Unadducted	Singly Adducted Fragment	
a ₂ -b ₂	$[401.1]^{-1}$	[401.1] ⁻	
a ₃ -b ₃	[730.2] ⁻	[730.2]-	
a ₄ -b ₄	$[1043.3]^{-1}$	[1043.3]	
a ₅ -b ₅	[1372.4] ⁻	[1372.4]	
a ₆ -b ₆	[1702.0] ⁻	[1001.3] ⁻²	
a ₇ -b ₇	$[1007.2]^{-2}$	[1158.8] ⁻²	
a ₈ -b ₈	n/d	$[1309.9]^{-2}$	
a ₉ -b ₉	[1323.8] ⁻²	[1474.9] ⁻²	
W17	[1755.6] ⁻³	n/d	
W18	[1395.6] ⁻³	n/d	
W19	$[1477.9]^{-4}$	[1242.7] ⁻⁵	
W20	[1541.7] ⁻	n/d	
W21	[915.1] ⁻²	n/d	

Table S7. Calculated m/z for standard and singly adducted DNA fragments of fragment 3. (m/z highlighted in red were the ions with increased m/z compared to that of standard corresponding to BPDE adducted)

Figure S8. . LC-MS of ds-32 bp 7 probe: exon MS/MS spectrum of 1530.3 showing a_n - b_n and w_n ions. Ions with m/z similar to standard labeled in green and ions with increased m/z in red in 10mM Tris buffer, pH 7.4 and 0.1M NaCl.

Scheme S2. Chemical structure of sequence GGC. Numbering of guanine shown in red. Proposed mechanism for attack of BPDE on exocyclic amine of guanine of DNA.

Scheme S3. Minor groove and Major groove of GC base pair of duplex DNA.

Figure S9. Representation of isotopic distribution ds DNA exon 7 probe for obtained ions A) Fragment 1, m/z 1437.8 (-3), B) Fragment 2, m/z 1530.3 (-3) C) Fragment 3, m/z 1012.6 (-3) D) Fragment 4, m/z 1234.4 (-6), measured on a Qstar Elite mass spectrometer (Sciex, USA)

Figure S10. LC-MS/MS of ds-32 bp exon 7 probe: Raw data of Tof MS/MS images for Fragment 2.

Figure S11. LC-MS/MS of ds-32 bp exon 7 probe: Raw data of Tof MS/MS images for Fragment 1 A) Peak 1 B) Peak 2.

466,1019

Figure S12. LC-MS/MS of ds-32 bp exon 7 probe: Raw data of Tof MS/MS images for Fragment 3.

Figure S14. Extracted ion chromatogram of standard unadducted fragments of 32 bp ds DNA after NIaIII treatment. (A) XIC of Fragment-1, 13 mer m/z, 1337.5 charge -3. (B) XIC of Fragment-2, 19 mer, m/z 1454.6 charge -4 (C) XIC of Fragment-3, 23 mer m/z 1421.3 charge -5 (D) XIC of Fragment-4, 9 mer m/z 912.2 charge -3.