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I. DEDUCTION OF THE FORMULA ΓnRRp→1 (t) = C

[
τ
(n−1)RR
p=1

t

](3/4)n

WITH

C ≈ 7.8π(11/4)AS(0)σ−5N−3/2 AND n ∈ [1, 2, 3] (EQ. 6 OF THE MANUSCRIPT)

The starting point is the Eq. 5 of the manuscript but for the so-called static limit, i. e.,

when S(k̄, t) ∼ S(0).

Γp→1(t) = 6Aσ−5S(0)

∫ 1

0

dk̄k̄2 exp

[
− k̄2

6σ2
〈r2(t)〉Q

]
(1)

(see the manuscript for the definition of the different parameters involved).

According to the general procedure for the n-Renormalization Rouse Model (n-RRM)

described in the manuscript, 〈r2(t)〉Q in Eq. 1 has to be replaced by the actual mean squared

displacement (msd) for a polymer segment obtained in the (n − 1)-RRM step. Then, for

n=1, 〈r2(t)〉Q has to be replaced by the actual msd corresponding to the zero-order RRM,

i. e., to the Rouse model. This can be written as (see, e. g., Ref. [1] in the manuscript)

〈r2(t)〉 =
2Nσ2

π3/2

(
t

τ 0
p=1

)1/2

.

Now, taking into account Eq. 1, Γ1RR
p→1(t) can be expressed as

Γ1RR
p→1(t) = 6Aσ−5S(0)

∫ 1

0

dk̄k̄2 exp

[
−k̄2

(
t

t0

)1/2
]

with t0 = 9π3τ 0
p=1N

−2.

Extending the upper limit of integration to∞ for mathematical convenience we can solve

the integral analytically. We obtain

Γ1RR
p→1(t) ' 3

2

√
πAσ−5S(0)

(
t0
t

)3/4

which can be expressed as

Γ1RR
p→1(t) ' C

(
τ 0
p=1

t

)3/4

(2)

with C = (3/2)93/4π11/4Aσ−5S(0)N−3/2.

As it is mentioned in the text of the manuscript, the solution of Eq. 2 of the manuscript,

with this memory function, gives a stretched exponential function for Φp=1(t),

Φ1RR
p=1 (t) = exp

[
−
(

t

τ 1RR
p=1

)β1RR

]
with β1RR =

3

4
.
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In such conditions, the corresponding msd, 〈r2
1RR(t)〉, can be expressed as (see Ref. [17] in

the manuscript):

〈r2
1RR(t)〉 =

2Nσ2

π3/2

(
t

τ 1RR
p=1

)β1RR/2

.

Now, replacing 〈r2(t)〉Q in Eq. 1 by 〈r2
1RR(t)〉 we would obtain Γ2RR

p→1(t). Doing similar

calculations that those described above for the case of Γ1RR
p→1(t), we obtain

Γ2RR
p→1(t) ' C

(
τ 1RR
p=1

t

)9/16

(3)

Φ2RR
p=1 (t) = exp

[
−
(

t

τ 2RR
p=1

)β2RR

]
with β2RR =

9

16
(4)

〈r2
2RR(t)〉 =

2Nσ2

π3/2

(
t

τ 2RR
p=1

)9/32

. (5)

Repeating again the same procedure for Γ3RR
p→1(t) we obtain

Γ3RR
p→1(t) ' C

(
τ 2RR
p=1

t

)27/64

. (6)

Equations 2, 3 and 6 can be written in a general form as:

ΓnRRp→1 (t) ' C

(
τ

(n−1)RR
p=1

t

)(3/4)n

n ∈ [1, 2, 3] (7)

II. EXPRESSING τ2RR
p=1 IN TERMS OF τ0

p=1

As it is described in the manuscript, Γsp→1(t) ≡ Γ3RR
p→1(t) depends on τ 2RR

p=1 , i. e., the

characteristic time of the Φp→1(t) function obtained by solving Eq. 2 of the manuscript with

the memory function corresponding to the n=2 renormalization Rouse model: Γ2RR
p→1(t). In

the following we will show how τ 2RR
p=1 can be expressed in terms of τ 0

p=1.

For convenience we will start expressing τ 1RR
p=1 in terms of τ 0

p=1. τ 1RR
p=1 is the characteristic

time of Φ1RR
p=1 (t), which is obtained by solving Eq. 2 of the manuscript with Γ1RR

p→1(t) =

C
(
τ0p=1

t

)3/4

. As it is explained in the manuscript ξ1RR(t) in Eq. 2 of the manuscript is

defined as ξ1RR(t) =
∫ t

0
dt′Γ1RR

p→1(t′). Then it can be calculated as

ξ1RR(t) = 4C(τ 0
p=1)3/4t1/4. (8)
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According to Eq. 2 in the manuscript for t >> tc (being tc defined by the condition

ξ(tc) ∼ ξ0), Φ1RR
p=1 (t) can be written now as

Φ1RR
p=1 (t) ' exp

[
− ξ0

τ 0
p=1

∫ t

0

dt′

ξ1RR(t′)

]
.

Taking into account the expression of ξ1RR(t) given above (Eq. 8), then

Φ1RR
p=1 (t) = exp

[
−
(

t

τ 1RR
p=1

)3/4
]

with τ 1RR
p=1 = τ 0

p=1

(
3Cτ 0

p=1

ξ0

)4/3

.

Now, taking into account (see the manuscript) that:

τ 0
p=1

ξ0

=
σ2N2

3π2kBT
;

C =
3

2
93/4π11/4AS(0)σ−5N−3/2;

A = kBTρmd
6g2(d)

and

ψ = 6ρmd
6σ−3g2(d)S(0),

then
Cτ0p=1

ξ0
becomes

Cτ 0
p=1

ξ0

=
93/4π3/4N1/2Ψ

12

and

τ 1RR
p=1 = τ 0

p=1a

where, as it is mentioned in the text of the manuscript, a =
(

93/4π3/4N1/2Ψ
4

)4/3

.

Now we can follow the same procedure for τ 2RR
p=1 . In that case,

ξ2RR(t) =

∫ t

0

dt′Γ2RR
p→1(t) =

16

7
C(τ 1RR

p=1 )9/16t7/16

and then,

Φ2RR
p=1 (t) = exp

[
−
(

t

τ 2RR
p=1

)9/16
]

with

τ 2RR
p=1 = τ 1RR

p=1

(
9Cτ 0

p=1

7ξ0

)16/9

=

(
3

7

)16/9

τ 1RR
p=1 a

4/3.

Now taking into account that τ 1RR
p=1 = τ 0

p=1a (see above) then we finally obtain:

τ 2RR
p=1 = τ 0

p=1

(
3

7

)16/9

a7/3.
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III. CHECKING THE VALIDITY OF THE PSEUDO-MARKOV APPROXIMA-

TION

The pseudo-Markov approximation used in this work can be expressed as:

∫ t

0

dt′Γp→1(t− t′)dCp→1(t′)

dt′
≈ dCp→1(t)

dt

∫ t

0

dt′Γp→1(t′) . (9)

The two terms of this equation can be calculated by taking into account the Γp→1(t) function

given by Eq. 7 of the manuscript

Γp→1(t) ' b

(
τ 0
s

t

)27/64

exp

[
−
(

t

2τα

)0.5
]

with particular values of τ 0
s and τα and the corresponding stretched exponential functions

Φp→1(t) =
Cp→1(t)

Cp→1(0)
= exp

[
−
(

t

τp=1

)β]
.

In fact, as in the calculations described in the text of the manuscript we have used a

fixed value of τ 0
s and b, in order to check Eq. 9 we have considered a ’normalized’ memory

function Γ̃p→1(t) defined as

Γ̃p→1(t) =
Γp→1(t)

b(τ 0
s )27/64

together with Φp→1(t).

The results obtained for a representative case (β = 0.7; τp=1 = 5950 ns) which corresponds

to τα = 300 ns, are shown below in Fig. 1. In this plot both, the ’convolution’ term (left side

of Eq. 9) and the ’pseudo-Markov’ term (left side of Eq. 9) are represented (with changed

sign) as a function of time. As can be seen, the agreement between them is rather good,

giving consistency to the approach used in this work.

On the other hand, concerning the validity of the pseudo-Markov approximation in gen-

eral, we can also compare the results obtained by Schweizer (Ref. 7 in the manuscript)

by means of the pseudo-Markov approximation and those of Fatkullin (Ref. 14 in the

manuscript). They both apply the GLE formalism to the same problem and in the frame-

work of the first renormalization procedure (see the text of the manuscript). In that similar

framework, Schweizer obtained for the mean squared displacement of a polymer segment of

a tagged chain 〈r2(t)〉 ∝ t3/8 while Fatkullin reported 〈r2(t)〉 ∝ t2/5. As for a stretched ex-

ponential function for Cp(t), 〈r2(t)〉 ∝ tβ/2 (see section I of this Supplemental Material and
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FIG. 1:

Ref. 8 of the manuscript), these results imply that the β value obtained in the framework

of the pseudo-Markov approximation for this case would be β = 0.75 (this is by the way the

value reported by Schweizer in Ref. 7) while the value obtained by solving numerically the

GLE would be β = 0.8. This could be taken as an estimation of the error in β by using the

pseudo-Markov approximation, at least in the framework used by Schweizer and Fatkullin.
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