ARTICLE TYPE

www.rsc.org/xxxxxx XXXXXXXX

Electronic Supplementary Information

Airflows generated by an impacting drop

Irmgard Bischofberger^a,* Bahni Ray^b, Jeffrey F. Morris^{c,d}, Taehun Lee^b and Sidney R. Nagel^a

The Electronic Supplementary Information consists of two movies showing the airflows generated by a liquid drop impacting a dry substrate.

Movie 1:

Impact of a 1.25 mm radius water-ethanol drop at Re_{air} = 612 on a smooth substrate. The liquid viscosity is $v_{liq} = 2.4 \text{ mm}^2/\text{s}$, the impact velocity is $u_0 = 3.8$ m/s and the pressure is P = 101 kPa.

Movie 2:

Impact of a 1.4 mm radius silicone oil drop at Re_{air} = 685 on a rough substrate with root-mean-square roughness $R_{rms} \approx 1 \ \mu \text{m}$. The liquid viscosity is $v_{liq} = 20 \text{ mm}^2/\text{s}$, the impact velocity is $u_0 = 3.8 \text{ m/s}$ and the pressure is P = 101 kPa.

^a The James Franck and Enrico Fermi Institutes and The Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA; b Department of Mechanical Engineering, City College of City University of New York, New York, 10031, USA; ^c Department of Chemical Engineering, City College of City University of New York, New York, 10031, USA; d Benjamin Levich Institute, City College of New York, New York, NY 10031, USA. E-mail: irmgard.bischofberger@gmail.com