Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Nanostructured alkali cations incorporated δ-MnO₂ as cathode materials for aqueous sodium-ion batteries

Yang Liu,^{†a,b} Yun Qiao,^{†a,b} Wuxing Zhang,^a* Huan Wang,^a Kongyao Chen,^a

Huaping Zhu,^a Zhen Li,^a and Yunhui Huang^a*

^a State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials
 Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
 ^b School of Chemistry and Chemical Engineering, Henan Normal University. Xinxiang 453007, China

* Corresponding author

E-mail: zhangwx@hust.edu.cn; huangyh@hust.edu.cn

Figure S1. EDS spectra of (a) K- δ -MnO₂ (KMO), (b) K, Na- δ -MnO₂ (KNMO), and

(c) Na- δ -MnO₂ (NMO).

Figure S2. The TG curve of NMO from room temperature to 700 °C at a rate of

10 °C min⁻¹ in a flowing air.

Figure S3. HRTEM, TEM images of (a) KNMO, (b) NMO.

Figure S4. Survey XPS spectra for pristine samples.

Figure S5. (a) CV curves of KNMO at different scan rates from 1 to 20 mV s⁻¹; (b) the linear dependence of $i/v^{1/2}$ on $v^{1/2}$ (*i*: current; *v*: scan rate); (c) CV curve of KNMO at a scan rate of 1 mV s⁻¹ and the estimated capacitive contribution (shaded region).

The layered δ -MnO₂ was investigated as supercapacitor electrode. The capacitive contribution was evaluated by using KNMO as SIB electrode. Figure S5a shows the CV curves of KNMO at different scan rates from 1 to 20 mV s⁻¹. At a fixed potential, the overall current response is assumed to contain two contributions: surface capacitive effect and diffusion controlled insertion process, which is calculated as below ^{1, 2}:

$$i(V) = k_1 v + k_2 v^{1/2} \tag{1-1}$$

It can be written as

$$i(V) / v^{1/2} = k_1 v^{1/2} + k_2$$
(1-2)

where k_1v is the current contribution from surface capacitive effect, and $k_2v^{1/2}$ is from the diffusion controlled insertion process. As shown in Figure S5b and equation (1-2), the linear dependence of $i/v^{1/2}$ on the scan rate of $v^{1/2}$ is used to determine the slope (k_1) and the intercept (k_2) at each fixed potential. This means that the capacitive effect can be estimated at a certain voltage. Figure S5c clearly demonstrates the estimated capacitive contribution in the shaded region at a scan rate of 1 mV s⁻¹. On the basis of the enclosed area, the capacitive charge storage accounts for 49% of the overall charge storage.

Figure S6. (a) XRD pattern, (b) EDS spectrum, and (c) FE-SEM image of $NaTi_2(PO_4)_3$.

As shown in Figure S6a, the XRD pattern reveals that it is well-defined NASICON structure (JCPDS 85-2265). The EDS result proves the coexistence of Na, Ti, P and O elements in the sample (Figure S6b). FE-SEM observation reflects that the NaTi₂(PO₄)₃ sample is consisted with a large number of aggregated particles.

Figure S7. (a) XPS spectra for the three electrodes after charge/discharge cycle.

Figure S8. XPS spectra for etched electrode: high-resolution spectra of (a) K 2p, (b)

Mn 2p and (c) O 1s.

References

- 1 J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 2007, 111, 14925-14931.
- 2 T. Brezesinski, J. Wang, J. Polleux, B. Dunn and S. H. Tolbert, J. Am. Chem. Soc., 2009, **131**, 1802-1809.