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Figure S1. Schematic illustration of the influence of the amount of the catalyst precursor on the 

structure and degree of graphitization of the carbon shell: (a) At an appropriate FeSO4 

concentration, the discrete graphene nanoislands produced around each Fe nanoisland will 

interconnect to form a compact and uniform polycrystalline graphene shell throughout the Ag 

surface, (b) At a low FeSO4 concentration, an amorphous carbon-rich shell is obtained due to the 

excessive carbon source, (c) At a high FeSO4 concentration, the size of the in-situ formed Fe 

nanoparticles is too large to catalyze the growth of an integrated polycrystalline graphene shell. 

The obtained coating layer is in fact composed of a series of closely packed graphene 

encapsulated Fe nanoparticles. The blue spheres represent the Fe nanoislands (or nanoparticles). 
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Figure S2. (a) TGA thermogram of the Si@void@amorphous carbon nanocomposites, (b) 

Raman spectra of the SiNPs and Si@void@amorphous carbon nanocomposites and (c) N2 

sorption isotherms of the pure SiNPs and Si@void@amorphous carbon nanocomposites.
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Figure S3. TEM images of (a) Si@void@graphene and (b) Si@void@amorphous carbon 

electrodes after the initial ten cycles in their fully discharged (lithiated) state.
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Figure S4. Reversible charge (delithiation) capacity and Coulombic efficiency versus cycle 

number profiles of the pure SiNPs electrodes. 
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Figure S5. SEM images of the Si@void@amorphous carbon electrode after 600 cycles.
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