Supporting Information

A two-dimensionally microporous thiostannate with superior Cs⁺ and Sr²⁺ ion-exchange property

Fig. S1. The TG-MS spectra of FJSM-SnS crystals with the characteristic mass data of Me₃NH⁺ (a), Me₂NH₂⁺ (b) and H₂O (c).

Fig. S2. Mass spectra of solution after solvetherml reaction (top), dimethylamine solution (middle) and trimethylamine solution (bottom).

Fig. S3. The PXRD patterns of TG residues at 420 °C (a) and 800 °C (b) compared to the simulated Sn_{1-x}S₂ and SnS patterns, respectively.

The thermal stability of FJSM-SnS has been studied. Two cyclic heat treatments at 100 °C have been carried out, Figure S4a. The PXRD patterns are comparable to that of the pristine after heat treatments, Figure S4b, suggesting the structural stability of FJSM-SnS at the temperature range of ion-exchange experiments. In fact, the ability of Cs⁺ removal is even improved a little after the heat treatment, Table S1.

Fig. S4. a) The two cyclic heat treatments with 45 min homothermal time; b) the related PXRD patterns after heat treatment are in good agreement with that of the pritine FJSM-SnS crystals.

Fig. S5. The TG-MS spectra of the FJSM-SnS-Cs crystals with the characteristic mass data of Me₃NH⁺ (a), Me₂NH₂⁺ (b) and H₂O (c).

Fig. S6. The EDS diagrams and data for Cs^+ and Sr^{2+} -exchanged products, respectively. The results showed the ratio of Sn:Cs was close to 3:1.93 while that of Sn:Sr was 3:0.54, which further verified the large ion-exchange capacity for Cs^+ close to the theoretical one and smaller ion-exchange capacity for Sr^{2+} .

	<i>m</i> / mg	V/mL	$C_{\rm o}$ / ppm	$C_{\rm f}/{\rm ppm}$	<i>K</i> _d / (mL/g)	Cs ⁺ Removal rate/%
FJSM-SnS	18.3	18	1.194	0.2805	3257	76.5
FJSM-SnS after heat treatment	18.3	18	0.9004	0.1873	3807	79.2
$(u_{120}^{135})_{0}$ $(u_{120}^{120})_{0}$						

Table S1. The effect of heat treatment on the ion-exchange performance.

Fig. S7. Kinetics of Cs⁺ and Sr²⁺ ion-exchange of FJSM-SnS at room temperature plotted as the Cs⁺ and Sr²⁺ ion concentration (ppm) vs the time t (min), respectively. The solutions of Cs⁺ (130.4 ppm) and Sr²⁺ (52.29 ppm) were prepared individually at neutral condition and V:m is 1000 mL/g (V = 10 mL, m = 10 mg). All the samples were carried out under 16-19 °C under magnetic stirring. Then we took one sample one time at different time of ion-exchange.

Fig. S8. PXRD patterns of the Cs⁺ and Sr²⁺-exchanged materials at extreme pH conditions.

Fig. S9. IR spectrum of FJSM-SnS.

Fig. S10. Photograph of the crystals of as-synthesized FJSM-SnS in a typical large-scale synthesis.

Metal cations	Conditions	$C_{\rm o}/{\rm ppm}$	$C_{\rm f}/{ m ppm}$	$K_{\rm d}$ / (mL/g)
$Cs^+ + Ca^{2+} + Mg^{2+} + Na^+$ + K ⁺	pH~7, <i>V:m</i> ~ 100 mL/g	2.056 (Cs) 8.227 (Ca) 7.646 (Mg) 6.367 (K)	0.6535 (Cs) 0.4390 (Ca) 2.075 (Mg) 5.130 (K)	2.15×10 ² (Cs) 1.77×10 ³ (Ca) 2.68×10 ² (Mg) 24 (K)
	pH~7, <i>V:m</i> ~ 1000 mL/g	2.159 (Cs)	1.652 (Cs)	3.07×10 ² (Cs)
	pH~11, <i>V:m</i> ~ 100 mL/g	1.984 (Cs) 7.878 (Ca) 8.315 (Mg) 5.574 (K)	0.8013 (Cs) 0.5483 (Ca) 1.853 (Mg) 5.481 (K)	1.48×10 ² (Cs) 1.34×10 ³ (Ca) 3.49×10 ² (Mg) 1.7 (K)
$\frac{Sr^{2+} + Ca^{2+} + Mg^{2+} + }{Na^+ + K^+}$	pH~7, <i>V:m</i> ~ 1000 mL/g	6.84 (Sr) 7.15 (Ca) 9.7 (Mg) 9.1 (K)	1.51 (Sr) 1.98 (Ca) 3.71 (Mg) 8.69 (K)	3.53×10 ³ (Sr) 2.61×10 ³ (Ca) 1.61×10 ³ (Mg) 47 (K)
	pH~11, <i>V:m</i> ~ 1000 mL/g	6.22 (Sr) 5.32 (Ca) 7.53 (Mg)	3.81 (Sr) 4.55 (Ca) 5.82 (Mg)	6.32×10 ² (Sr) 1.70×10 ² (Ca) 2.94×10 ² (Mg)

Table S2. The ion-exchange experiments in simulated groundwater.

Fig. S11. The K_d of Cs⁺ and Sr²⁺ in the simulated nuclear waste with the coexistence of 5 mol/L Na⁺ ion and dilute Cs⁺ or Sr²⁺ ions (KMS-2: Ref. 3, $C_0 = 5.314$ ppm for Cs⁺, $C_0 = 12.39$ ppm for Sr²⁺, V:m = 1000 mL/g, at 65 °C).

The ion-exchange performances in the simulated nuclear waste were explored. The solution with the coexistence of 5 mol/L Na⁺ ion and dilute Cs⁺ or Sr²⁺ ions was used to simulate nuclear waste. In the simulated nuclear waste, there are more than 10000-fold excess of Na⁺ than Cs⁺ and Sr²⁺. The ion-exchange performances of FJSM-SnS could be greatly affected by the excessive Na⁺ as KMS-1 and KMS-2.

Metal cations	C_{o} / ppm (initial concentration)	$C_{\rm f}$ / ppm (equilibrium concentration)	$K_{\rm d}$ / (mL/g) (distribution coefficient)
Na ⁺	80.26	71.08	1.3×10^{2}
K ⁺	129.3	117.83	0.97×10 ²
Rb ⁺	257.7	230	1.20×10 ²
Cs ⁺	47.32	30.93	5.30×10 ²

Table S3. The competitive ion-exchange experiments of alkali metal cations.(mole ratio, Cs^+ : Rb^+ : K^+ : $Na^+ = 1$: 10: 10: 10)

Metal cations	$C_{\rm o}$ / ppm (initial concentration)	$C_{\rm f}$ / ppm (equilibrium concentration)	$K_{\rm d}$ / (mL/g) (distribution coefficient)			
Mg^{2+}	7.25	1.96	2.67×10 ³			
Ca ²⁺	12.14	2.44	3.98×10 ³			
Sr ²⁺	3.4	0.48	6.08×10 ³			
Ba ²⁺	36.8	4.61	6.98×10 ³			

Table S4. The competitive ion-exchange experiments of alkali-earth metal cations.(mole ratio, Sr^{2+} : Mg^{2+} : Ca^{2+} : $Ba^{2+} = 1$: 10: 10: 10)

Table S5. The data in the ion-exchange chromatographic column experiment

Metal cations	Volume/Bed volume	$C_{\rm o}$ / ppm	$C_{\rm t}$ / ppm	$C_{\rm t}/{\rm pg}\cdot{\rm mL}^{-1}$
	53.76344	12.03	0.4648	4.65×10 ⁵
	89.60573	12.03	0.3941	3.94×10 ⁵
	143.3692	12.03	0.4081	4.08×10 ⁵
	179.2115	12.03	0.4053	4.05×10 ⁵
	232.9749	12.03	0.4043	4.04×10 ⁵
C +	268.8172	12.03	0.4109	4.11×10 ⁵
Cs	358.4229	14.52	0.2205	2.21×10 ⁵
	465.9498	14.52	0.17	1.70×10 ⁵
	555.5556	14.52	0.1996	2.00×10 ⁵
	663.0824	14.52	0.2456	2.46×10 ⁵
	720.4301	14.52	0.2709	2.71×10 ⁵
	867.3835	14.52	0.3568	3.57×10 ⁵
	53.76344	5.98	0.14	1.40×10 ⁵
	89.60573	5.98	0.065	6.50×10 ⁴
	143.3692	5.98	0.033	3.30×10 ⁴
	179.2115	5.98	0.033	3.30×10 ⁴
	232.9749	5.98	0.018	1.80×10^{4}
Sr2+	268.8172	5.98	0.017	1.70×10^{4}
512	358.4229	5.98	0.00853	8.53×10 ³
	465.9498	5.98	0.00535	5.35×10 ³
	555.5556	5.98	0.01067	1.07×10^{4}
	663.0824	5.98	0.00811	8.11×10 ³
	720.4301	5.98	0.00581	5.81×10 ³
	867.3835	5.98	0.00749	7.49×10 ³