Supporting Information

Preparation of ZnFe₂O₄ nanostructures and high efficient visible-

light-driven hydrogen generation with the assistance of nanoheterostructures

Hui Song, Liping Zhu*, Yaguang Li, Zirui Lou, Mu Xiao, Zhizhen Ye

Fig. S1. Nitrogen adsorption–desorption isotherms and corresponding pore diameter distribution curves (inset) of ZnFe₂O₄ nanostructures.

Fig. S2. a) UV–vis diffuse absorption spectra of $ZnFe_2O_4$ and ZnO, b) UV–vis diffuse absorption spectra of sample ZF1, ZF2, ZF3, ZF4.

Samples	Absorption edge	Bang gap $(E_g)/eV^a$			
	(λ)/nm				
ZnFe ₂ O ₄	570	2.18			
ZnO	372	3.33			
ZF1	567	2.19			
ZF2	564	2.20			
ZF3	562	2.21			
ZF4	557	2.23			

Table S1. The bang gap of the as-prepared samples

^{*a*}Bang gap (E_g)=1240/ λ

Photocatalyst	Incident	Reactant	Cocat	H2 generation	Ref.
	light	solution	-alyst	rate (µmol h ⁻¹ g ⁻¹)	
ZnFe ₂ O ₄	λ>420nm	10 vol%	-	280	
nanostructures	300 W	CH ₃ OH			
	Xe-lamp				This
ZnFe ₂ O ₄ /ZnO	λ>420nm	10 vol%	-	2150	work
nanoheterostructures	300 W	CH ₃ OH			
(sample ZF2)	Xe-lamp				
ZnFe ₂ O ₄ nanorod	λ>420nm	17 vol%	-	47.57	
	250 W	CH ₃ OH			1
	Xe-lamp				
ZnFe ₂ O ₄ spherical	λ>420nm	Sodium	-	20	
particles	250 W	sulfite			2
	UV-vis	(0.05 M)			
	lamp				

Table S2. Comparison of photocatalytic activity in hydrogen generation over $ZnFe_2O_4$ -based photocatalytic.

Fig. S3 The HRTEM images of different size of ZnFe₂O₄ nanospheres

Fig. S4 a) The XRD pattern of sample ZF1 annealed at 450, 550 and 650 °C. b,c,d) the SEM images of sample ZF1 annealed at 450, 550 and 650 °C.

Fig. S5. a), b) and c) are the HRTEM images of sample ZF1, sample ZF3, and sample ZF4, respectively.

Table S3. The turn	over number (TON) ba	ased on catalysts under	r visible light irradiation	(λ>420
		2	0	

nm) within 5 h.	
Samples	TON^a
$ZnFe_2O_4$	0.34
ZF1	1.44
ZF2	2.97
ZF3	1.35
ZF4	0.31

^{*a*}TON= Number of generated H₂ molecules / Number of ZnFe2O4 molecules.

Samples	Hydrogen generation rate (mmol h ⁻¹ g ⁻¹)			
ZnFe ₂ O ₄	0.35			
ZF1	1.37			
ZF2	2.68			
ZF3	1.15			
ZF4	0.83			
ZnO	0.18			

Table S4. The hydrogen generation rate of the as-prepared samples under simulated solar light irradiation.

Fig. S6. Typical SEM images of ZnFe₂O₄/ZnO nanoheterostructures (sample ZF2) after photocatalytic reaction.

Fig. S7. The PL spectra of sample ZF1, sample ZF2, sample ZF3, and sample ZF4.

Fig. S8 Photoluminescence decay curves of sample ZF2, ZnFe₂O₄, ZnO.

Table S5 The photoluminescence decay time of all the samples derived from the time-resolved photoluminescence spectroscopy.

	Decay time (ns)			Realtive amplitude (%)			Average	χ^2
Sample	τ_1	τ_2	τ_3	\mathbf{f}_1	\mathbf{f}_2	f_3	life (<τ>,	
							ns) ^a	
ZnFe ₂ O ₄	1.6305	5.6658	12.6384	46.24	37.29	16.47	7.98	1.172
ZF1	1.608	5.4223	14.4415	0.1826	0.5258	13.6529	10.43	1.133
ZF2	1.4723	6.4067	18.9043	0.2043	0.4258	0.3699	14.98	1.285
ZF3	1.7274	5.2801	13.6529	0.2903	0.4650	0.2447	9.44	1.159
ZF4	1.4120	5.1668	13.5449	0.3162	0.4946	0.1892	8.72	1.170
ZnO	1.6197	5.1443	11.9333	0.3437	0.4749	0.1814	7.61	1.152

^aThe average lifetime was calculated using equation: $<\tau>=(f_1\tau_1^2+f_2\tau_2^2+f_3\tau_3^2)/(f_1\tau_1+f_2\tau_1+f_3\tau_1)$

 χ^2 : the goodness of fit parameter.

References

- 1. H. Lv, L. Ma, P. Zeng, D. Ke and T. Peng, *Journal of Materials Chemistry*, 2010, **20**, 3665.
- 2. X. Xu, A. K. Azad and J. T. S. Irvine, *Catalysis Today*, 2013, **199**, 22-26.