Electronic supplement information (ESI)

Thermostable and nonflammable silica-polyetherimidepolyurethane nanofibrous separators for high power lithium ion batteries

Yunyun Zhai,^{ab} Ke Xiao,^a Jianyong Yu,^c Jianmao Yang,^d and Bin Ding*ac

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

College of Materials Science and Engineering, Donghua University, Shanghai 201620,

China. E-mail: binding@dhu.edu.cn (B. Ding)

^b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China

^c Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China

^d Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China

Fig. S1 Stress-strain curves of the Celgard membrane.

Fig. S2 FT-IR spectra of SiO₂-PEI-PU nanofibrous membranes.

The FT-IR spectra of the SiO₂-PEI-PU nanofibrous membranes are shown in Fig. S2. The absorption spectra exhibit characteristic imide group absorptions at 1780 and 1720 cm⁻¹ (asymmetrical and symmetrical stretching of imide carbonyl bond), 1360 and 743 cm⁻¹ (C-N stretching and bending), and 1237 cm⁻¹ (aromatic ether C-O-C).¹ The typical absorption features for carbamate group were found at 3335 cm⁻¹ (hydrogen-bonded N-H stretching), 1720 cm⁻¹ (stretching vibrations of C=O), 1534 cm⁻¹ (CO-N-H bending), 1110 cm⁻¹ (C-O-C), 2945 and 2860 cm⁻¹ (asymmetrical and symmetric stretching of CH₂), respectively.² Meanwhile, the increased band intensity

at 1110 cm⁻¹ of SiO₂-PEI-PU membranes containing 8 wt% SiO₂ NPs may be ascribed to Si-O-Si stretching, which implies that the introduction of SiO₂ NPs.

Fig. S3 EDX spectra of SiO₂-PEI-PU nanofibrous membranes.

Further confirmation of the involvement of SiO₂ NPs has done by the energydispersive X-ray spectroscopy (EDX). Fig. S3 shows the typical EDX pattern for PEI-PU and SiO₂-PEI-PU nanofibrous membranes. Note that Pt signals come from the sputter-coating gold film. The EDX pattern for the SiO₂-PEI-PU membranes containing 0 wt% SiO₂ NPs do not show the characteristic signal of Si, whereas for the SiO₂-PEI-PU nanofibrous membranes containing 8 wt% SiO₂ NPs a clear signal of the presence of Si has been observed. All of these indicate that the successful introduction of SiO₂ NPs in the SiO₂-PEI-PU membranes.

References

- 1. A. Choudhury, Mater. Chem. Phys., 2010, 121, 280.
- 2. J. Wang, Y. Li, H. Tian, J. Sheng, J. Yu and B. Ding, RSC Adv., 2014, 4, 61068.