Supplementary Information

Facile synthesis of Pd nanostructures in hexagonal mesophases as

promising electrocatalyst for ethanol oxidation

Srabanti Ghosh^{a,b*}, Hynd Remita^{b,c}, Prasenjit Kar^a, Susobhan Choudhury^a, Samim Sardar^a, Patricia Beaunier^d, Partha Sarathi Roy^e, Swapan Kumar Bhattacharya^e, Samir Kumar Pal^a

^aDepartment of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India ^bLaboratoire de Chimie Physique, UMR 8000-CNRS, Université Paris-Sud, 91405 Orsay Cedex, France ^cCNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay, France ^dSorbonne Universités, UPMC Univ. Paris 06, UMR 7197-CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France ^ePhysical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata,

^ePhysical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700 032, India

List of contents:

Figure S1 FTIR spectra of surfactant, Pd complex and Pd nanoparticles synthesized in hexagonal mesophases.

Figure S2 (a)Polarized light micrograph of pure mesophases in the presence of 0.1 M NaCl(b) Polarized light micrograph of doped mesophases with 0.1 M Pd complex, (c) and (d) Pd complex doped mesophases after 12 and 24 hours photo irradiation respectively. After photo reduction of Pd complex, Pd nanostructures shows a large degree of preservation of the birefringent pattern indicative of the stability of hexagonal LC phase.

Figure S3 Transmission electron micrographs of Pd nanostructures synthesized in hexagonal mesophases by 5 hrs UV-irradiation.

Figure S4 (a-b) higher resolution transmission electron micrographs and (c) layered morphologies RGO nanosheets synthesized by gamma-irradiation.

Figure S5 Cyclic voltammograms of reduced RGO nanosheets in 1M NaOH (black solid line curve) and with the electrocatalytic oxidation of 1 M EtOH in 1 M NaOH (red solid line). The working electrode was a glassy carbon disk modified with the RGO Pd nanosheets. The reference electrode was an Hg/HgO (1 M KOH) electrode. The scan rate was 50 mVs⁻¹.

Figure S1 FTIR spectra of surfactant, Pd complex and Pd nanoparticles synthesized in hexagonal mesophases.

Figure S2 (a)Polarized light micrograph of pure mesophases in the presence of 0.1 M NaCl_(b) Polarized light micrograph of doped mesophases with 0.1 M Pd complex, (c) and (d) Pd complex doped mesophases after 12 and 24 hours photo irradiation respectively. After photo reduction of

Pd complex, Pd nanostructures shows a large degree of preservation of the birefringent pattern indicative of the stability of hexagonal LC phase.

Figure S3 Transmission electron micrographs of Pd nanostructures synthesized in hexagonal mesophases by 5 hrs UV-irradiation.

Figure S4 (a-b) higher resolution transmission electron micrographs and (c) layered morphologies RGO nanosheets synthesized by gamma-irradiation.

Figure S5 Cyclic voltammograms of reduced RGO nanosheets in 1M NaOH (black solid line curve) and with the electrocatalytic oxidation of 1 M EtOH in 1 M NaOH (red solid line). The working electrode was a glassy carbon disk modified with the RGO nanosheets. The reference electrode was an Hg/HgO (1 M NaOH) electrode. The scan rate was 50 mVs⁻¹.