Electronic Supplementary Information

One-step synthesis of SnO_{x} nanocrystalline aggregates encapsulated by amorphous TiO_{2} as anode in Li-ion battery

Xiaoyu Hou, ${ }^{a}$ Yanjie Hu, ${ }^{* a}$ Hao Jiang, ${ }^{a}$ Yunfeng Li, ${ }^{b}$ Wenge Li ${ }^{a}$ and Chunzhong Li* ${ }^{*}$
${ }^{\text {a }}$ Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and
Engineering, East China University of Science \& Technology, Shanghai 200237, China
${ }^{\mathrm{b}}$ Shanghai Nanotechnology Promotion Center, Shanghai 200237, China
*To whom correspondence should be addressed.
E-mail: czli@ecust.edu.cn (Prof. C. Z. Li) and huyanjie@ecust.edu.cn (Dr. Y. J. Hu)

Fax: +86 21 64250624; Tel: 86-21-6425-0949;

Figure S1 Schematic diagram of FSP process for $\mathrm{SnO}_{x} \mathrm{NAs} @ \mathrm{TiO}_{2}$.

The FSP process includes two parts: flame synthesis of SnO_{x} NAs and then in situ encapsulation of TiO_{2} on fresh SnO_{x} NAs. The tin source dissolved in the ethanol had been sprayed into flame and decomposed into primary particles, grown into SnO_{x} nanocrystallines and aggregated into aggregations owing to the unique characteristics of FSP. The TiCl_{4} vapors were introduced through the quenching ring with the acid of carrying N_{2} gas. Then the TiCl_{4} hydrolyzed into TiO_{2} and heterogeneously nucleated on the surface of SnO_{x} NAs, finally forming the core-shell structure of SnO_{x} $\mathrm{NAs} @ \mathrm{TiO}_{2}$.

Figure S2 (a) TEM image and (b) particle size distribution of $\mathrm{SnO}_{x}{\mathrm{NAs} @ \mathrm{TiO}_{2}}$

Figure $\mathbf{S 3}$ TGA and DSC curves of $\mathrm{SnO}_{x} \mathrm{NAs} @ \mathrm{TiO}_{2}$

Figure S4. BET of $\mathrm{SnO}_{x} \mathrm{NAs} @ \mathrm{TiO}_{2}$ (inset of Pore volume/diameter)

Figure S5. Coulomb efficiency and capacity retention of $\mathrm{SnO}_{x} \mathrm{NAs@} \mathrm{TiO}_{2}$ electrode

Figure S6. SEM and TEM images of as-prepared $\mathrm{SnO}_{x} \operatorname{NAs}(\mathrm{a}, \mathrm{b})$ and $\mathrm{TiO}_{2} \mathrm{NAs}(\mathrm{c}, \mathrm{d})$

Figure S7. Coulomb efficiency of SnO_{x} NAs and TiO_{2} NAs electrodes.

Fig. S8 TEM images of $\operatorname{SnO}_{x} \mathrm{NAs@}$ ($\mathrm{TiO}_{2}(\mathrm{a}, \mathrm{b})$ and $\mathrm{SnO}_{x} \mathrm{NAs}(\mathrm{c}, \mathrm{d})$ after 50 cycles, respectively.

