Electronic Supplementary Information

Zinc-doped SnO₂ nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells

Xiaochao Li, ^a Qingjiang Yu,*^a Cuiling Yu,*^b Yuewu Huang, ^a Renzhi Li,^c Jinzhong Wang,*^a Fengyun Guo, ^a Yong Zhang, ^a Shiyong Gao^a and Liancheng Zhao^a

^a Department of Opto-electronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China. Fax: +86 0451 86418328; Tel: +86 0451 86418745; E-mail: qingjiang.yu@hit.edu.cn; jinzhong wang@hit.edu.cn

^bDepartment of Physics, Harbin Institute of Technology, Harbin, 150001, China. Fax: +86 0451 86418328; Tel: +86 0451 86418745; E-mail: cuiling.yu@hit.edu.cn

^c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

Fig. S1 The pH-dependent zeta-potential of the undoped and Zn-doped SnO₂ nanoparticles.

Fig. S2 J-V characteristics of the undoped and Zn-doped SnO₂ based cells measured in the dark.

Fig. S3 J-V characteristics of the undoped and Zn-doped SnO₂ based cells with the TiCl₄ treatment under an irradiance of 100 mW cm⁻² simulated AM1.5G sunlight.

Morphology	Synthetic	Diameter	Film	η (%)	η (%)	Reference
	method or		thickness	(no surface	(after surface	
	manufacturer			treatment)	treatment)	
SnO ₂ nanoparticles	Alfa Aesar	15 nm	4 µm	0.76	Al ₂ O ₃ /3.7	S1
SnO ₂ nanoparticles	Alfa Aesar	15-140 nm	8 µm	1.2	Zn(CH ₃ COO) ₂ /5.1	S2
SnO ₂ nanoparticles	Alfa Aesar	15 nm	_	1.7	CaCO ₃ /5.4	S3
SnO ₂ nanopowder	Sigma-Aldrich	<100 nm	8 µm	3.65	MgO/6.40	S4
SnO ₂ nanoparticles	Alfa Aesar	3-5nm	10 µm	1.74	MgO/7.21	S5
SnO ₂ nanowires	Reactive vapor	20-200 nm	25-30 µm	2.1	TiCl ₄ /4.1	S6
	transport					
SnO ₂ nanofibers	_	200 nm	8.7 µm	_	TiCl ₄ /4.63	S7
SnO ₂ nanotubes	Electrospinning	110 nm	13 µm	0.99	TiCl ₄ /5.11	S 8
SnO ₂ nanoflowers	Hydrothermal	1 μm	_	1.05	TiCl ₄ /5.60	S9
SnO ₂ hollow microspheres	Hydrothermal	1-2 μm	10 µm	1.4	TiCl ₄ /5.65	S10
SnO ₂ hollow nanospheres	Hydrothermal	200 nm	_	0.86	TiCl ₄ /6.02	S11
Mesoporous SnO ₂	Molten salt	200-600 nm	8 µm	3.05	TiCl ₄ /6.23	S12
agglomerates	method					
SnO ₂ octahedra	Sonochemical	0.5-1.8µm	13.2 µm	_	TiCl ₄ /6.8	S13
Mg-doped SnO ₂ nanoparticles	Hydrothermal	100 nm	_	2.03	TiCl ₄ /4.15	S14
Zn-doped SnO ₂ nanoflowers	Hydrothermal	1 μm	10 µm	3.00	TiCl ₄ /6.78	S15
Al-doped SnO ₂ nanocrystals	Hydrothermal	11.6-15.9 nm	8 µm	3.56	TiCl ₄ /6.91	S16
Zn-doped SnO2 nanocrystals	Hydrothermal	15 nm	8.5 µm	4.18	TiCl ₄ /7.70	Our work
			8.5+5 µm	_	TiCl ₄ /8.23 (with a	
					scattering layer)	

Table S1 Comparison of the photovoltaic performance of the DSCs based on SnO₂ photoanodes with various morphologies.

Fig. S4 Pots of lifetime of photoinjected electrons in the DSCs based on undoped and Zn-doped SnO_2 photoanodes with TiCl₄ treatment as a function of charge.

Fig. S5 FESEM image of SnO₂ spheres.

References

- S1 C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett., 2010,1, 1611–1615.
- S2 A. Kay and M. Grätzel, Chem. Mater., 2002, 14, 2930–2935.
- S3 K. A. T. A. Perera, S. G. Anuradha, G. R. A. Kumara, M. L. Paranawitharana, R. M. G. Rajapakse and H. M. N. Bandara, *Electrochim. Acta*, 2011, **56**, 4135–4138.
- S4 P. Docampo, P. Tiwana, N. Sakai, H. Miura, L. Herz, T. Murakami and H. J. Snaith, J. Phys. Chem. C, 2012, 116, 22840–22846.
- S5 M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara and A. Konno, Sol. Energy Mater. Sol. Cells, 2007, 91, 544–547.
- S6 S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater., 2008, 18, 2411–2418.
- S7 R. Kasaudhan, H. Elbohy, S. Sigdel, H. Qiao, Q. Wei and Q. Qiao, IEEE Electron. Device Lett., 2014, 35, 578-580.
- S8 C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan and E. Xie, *Nanoscale*, 2012, 4, 3475–3481.
- S9 H. Niu, S. Zhang, R. Wang, Z. Guo, X. Shang, W. Gan, S. Qin, L. Wan and J. Xu, J. Phys. Chem. C, 2014, 118, 3504–3513.
- S10 J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai and H. Yang, Adv. Mater., 2009, 21, 3663–3667.
- S11 H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li and L. Guo, CrystEngComm, 2012, 14, 5177–5181.
- S12 P. Zhu, M. V. Reddy, Y. Wu, S. Peng, S. Yang, A. S. Nair, K. P. Loh, B. V. R. Chowdari and S. Ramakrishna, *Chem. Commun.*, 2012, 48, 10865–10867.
- S13 Y.-F. Wang, K.-N. Li, C.-L. Liang, Y.-F. Hou, C.-Y. Su and D.-B. Kuang, J. Mater. Chem., 2012, 22, 21495–21501.
- S14 H. Pang, H. Yang, C. X. Guo and C. M. Li, ACS Appl. Mater. Interfaces, 2012, 4, 6261–6265.
- S15 X. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, Chem. Mater., 2011, 23, 3938–3945.
- S16 Y. Duan, J. Zheng, N. Fu, Y. Fang, T. Liu, Q. Zhang, X. Zhou, Y. Lin and F. Pan, J. Mater. Chem. A, 2015, DOI: 10.1039/C4TA05923A.