Supporting Information

Selective etching of metastable phase induced an efficient

CuIn_{0.7}Ga_{0.3}S₂ nano-photocathode for solar water splitting

Zhongjie Guan,^a Wenjun Luo,^{*bc} Jianyong Feng,^a Qiuchen Tao,^c Yao Xu,^c Xin Wen,^c

Gao Fu^c and Zhigang Zou^{*c}

^aCollege of Engineering and Applied Science, Nanjing University, Nanjing 210093, P.R. China

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu
Road, Nanjing 211816, P.R. China
^eEco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing

University, Nanjing 210093, P.R. China

*To whom correspondence should be addressed,

E-mail: iamwjluo@njtech.edu.cn, zgzou@nju.edu.cn

Fig. S1 High-resolution TEM images of the $CuIn_{0.7}Ga_{0.3}S_2$ nanoparticles before etching (a), 0.4 V etching (b), and 0.8 V etching (c).

Fig. S2 (a) Relative electrochemical active area measurement of $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes before and after 0.8 V etching: linear relationship between the capacitive current and scan rate for the $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes before and after 0.8 V etching. The inset is the example cyclic voltammograms showing the capacitive current for the $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes after 0.8 V etching at different scan rate from 25 to 300 mV s⁻¹. (b) Plot showing the linear relationship between the capacitive current and scan rate for the Pt/CdS/CuIn_{0.7}Ga_{0.3}S_2 electrode before and after 0.8 V etching. The relative electrochemical surface area was determined from capacitance measurements by cyclic voltammetry scan between 0.38 V_{RHE} and 0.58 V_{RHE} in a Na₂SO₄ aqueous solution (0.5 mol/L, pH = 6.5) in the dark. The scan rates were changed from 25 to 300 mV s⁻¹.

Table S1. Surface atomic ratios of the $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes before and after 0.8 V etching by XPS.

Samples	Atomic ratio	
	Cu/(In+Ga)	In/Ga
before etching	0.90	4.29
0.8V etching	1.61	5.20

Fig. S3 Mott–Schottky plots of the $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes before and after etching with different potential ranges. The ac amplitude is 10 mV and the frequenciey is 200 Hz.

Fig. S4 A schematic diagram of three fundamental processes of photo-generated carriers in a photocathode.

Fig. S5 UV-vis absorption spectra of the $CuIn_{0.7}Ga_{0.3}S_2$ photocathodes before and after 0.8 V etching.

Fig. S6 Integrated solar photocurrent at 0 V_{RHE} by integrating IPCE with the standard solar spectrum.

Fig. S7 Time course of hydrogen gas evolution for the Pt/CdS/CuIn_{0.7}Ga_{0.3}S₂ photocathode (1 cm²) before etching at 0 V_{RHE} (a) and 0.4 V etching (b). Light source: AM 1.5G simulated sunlight (100 mW cm⁻²). The theoretical number of hydrogen and oxygen molecules is denoted by $e^{-1/2}$ and $e^{-1/4}$ respectively.