Defective by design: Vanadium-substituted iron oxide nanoarchitectures as cation-insertion hosts for electrochemical charge storage

Christopher N. Chervin,*^a Jesse S. Ko,^b Bryan W. Miller,^a Lisa Dudek,^c Azzam N. Mansour,^d Martin D. Donakowski,^a Todd Brintlinger,^e Pavel Gogotsi,^a Soma Chattopadhyay,^{f,g} Tomohiro Shibata,^g Joseph F. Parker,^a Benjamin P. Hahn,^a Debra R. Rolison,^a and Jeffrey W. Long*^a

^a U. S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, D.C. 20375, USA

^b Department of Materials Science and Engineering, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA

^c Department of Chemistry and Biochemistry, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA

^d Naval Surface Warfare Center, Carderock Division, Materials and Power Systems Branch (Code 6160), West Bethesda, MD, 20817, USA

^e U. S. Naval Research Laboratory, Materials and Sensors Branch (Code 6360), Washington, D.C. 20375, USA

^f Physical Sciences Department, Elgin Community College, 1700 Spartan Drive, Elgin, IL 60123.

⁸ Previously at: Sector 10 ID, CSRRI- IIT, Advanced Photon Source, 9700 S. Cass Avenue, Lemont, IL 60439.

*Corresponding authors: christopher.chervin@nrl.navy.mil (C. N. Chervin); jeffrey.long@nrl.navy.mil (J. W. Long)

Fig S1 Scanning electron micrographs of an as-synthesized VFe_2Ox aerogel at different magnifications. The low-magnification images (upper) demonstrate that the through-connected porosity permeates across the large length-scales of aggregates that remain after pulverizing the aerogel monolith. The high-magnification images (lower) show the connected, tendril-like solid-network that connects the nanometric oxide particles comprising the aerogel.

Fig S2 Pore size distribution plots derived from N_2 -sorption porosimetry for (top) VFe₂Ox aerogels and (bottom) a 300-O₂ FeOx aerogel.

Fig S3 Thermogravimetric analysis and differential scanning calorimetry of as-synthesized VFe₂Ox aerogels at 10° C in⁻¹ under flowing: O₂ (top) and Ar (bottom).

Fig S4 Scanning electron micrographs of VFe_2Ox aerogels: (a) 300-Ar, and (b) 300-Ar-O₂.

Fig S5 Rietveld fit of synchrotron powder X-ray diffraction data (PXRD) for a 300-Ar VFe₂Ox aerogel. ($\lambda = 0.413851$ Å). a) Fit of 300-Ar with a maghemite structure (spacegroup $P4_332$) from 3–30°, b) Fit of 300-Ar with a magnetite structure shown from 3–10°, c) fit of 300-Ar with a magnetite structure (spacegroup Fd-3m) from 3–30°, d) Fit of 300-Ar with a magnetite structure shown from 3–10°. The fits at low 2 θ with a magnetite structure shown peaks that are not present in the data – the (nano)crystalline phase thus more correctly fits to the magnetite structure.

Fig S6 Rietveld fit of synchrotron powder X-ray diffraction data (PXRD) for a 300-Ar-O₂ VFe₂Ox aerogel ($\lambda = 0.413851$ Å) a) Fit of 300-Ar-O2 with a maghemite structure (spacegroup *P*4₃32) from 3 – 30°, b) Fit of 300-Ar-O₂ with a maghemite structure shown from 3–10°, c) fit of 300-Ar-O₂ with a magnetite structure (spacegroup *Fd-3m*) from 3–30°, d) Fit of 300-Ar-O₂ with a magnetite structure shown from 3–10°. The fits at low 2 θ with a maghemite structure show peaks that are not present in the data – the (nano)crystalline phase thus more correctly fits to the magnetite structure.

Fig S7 X-ray photoelectron spectra of the $Fe2p_{1/2}$ binding energy for VFe₂Ox aerogels: 300-O₂ (—), 300-Ar (—), 300-Ar-O₂ (—), and background fit (---).

Fig S8 Fe K-edge XANES for FeO*x* aerogels: $300-O_2$ (—), 300-Ar (-••–), and as-synthesized (••••); and iron oxide standards: FeO (- • –) and Fe₂O₃ (– —).

Fig S9 Fe (top) and V (bottom) K-edge XANES for VFe₂Ox aerogels: $300-O_2$ (—), $300-Ar-O_2$ (– –), 300-Ar (–••–), and assynthesized (•••). Iron oxide standards (top): FeO (– • –) and Fe₂O₃ (– —); vanadium oxide standards (bottom): V₂O₅ (– • –), VO₂ (– —), and V₂O₃ (—).

Fig S10 Fe K-edge EXAFS spectra (top) and Fourier transform of EXAFS spectra (bottom) for FeOx aerogels: $300-O_2$ (—), 300-Ar (-••–) and as-synthesized (•••). Iron oxide standards: FeO (-•–) and Fe₂O₃ (–—).

Fig S11 Fe K-edge EXAFS spectra (top) and Fourier transform of EXAFS spectra (bottom) for VFe₂Ox aerogels: $300-O_2$ (—), $300-Ar-O_2$ (– –), 300-Ar (–••–), and assynthesized (•••). Iron oxide standards: FeO (– • –) and Fe₂O₃ (– –).

Fig S12 V K-edge EXAFS spectra (top) and Fourier transform of EXAFS spectra (bottom) for VFe₂Ox aerogels: $300-O_2$ (—), $300-Ar-O_2$ (— –), 300-Ar (—••–), and assynthesized (•••). Vanadium oxide standards: V_2O_5 (— • –) and VO_2 (— —).