Facile preparation of three-dimensional Fe₃O₄/macroporous graphene composite for high-performance Li storage

Xiaoyu Lu^a, Ronghua Wang^a, Yang Bai^a, Jingjing Chen^a and Jing Sun^{a*}

Supplementary Information

^{*} Corresponding authors. Tel: +86 21 52414301. Fax: +86 21 52413122.

E-mail address: jingsun@mail.sic.ac.cn (J. Sun)

Table S1. Zeta potentia	l of various	composites tested
-------------------------	--------------	-------------------

pH=5	GO	Fe(OH) ₃ /GO	c-PS
Zeta Potential (mV)	-28.84	27.77	-54.40

Fig. S1 TEM images of as-prepared c-PS spheres at different magnification.

Fig. S2 SEM images of the Fe_3O_4/GS at different magnification.

Fig. S3 Raman spectra of Fe(OH)₃/GO/c-PS, Fe(OH)₃/GO, calcined c-PS and pristine c-PS.

Table S2 Raman D and G band positions of different materials and the	corresponding
I_D/I_G value.	

	FPG	Fe ₃ O ₄ /GS	Fe(OH) ₃ /GO/c-PS	Fe(OH) ₃ /GO	GO	Calcined c- PS
D band / cm ⁻¹	1342	1334	1332	1348	1341	1335
G band / cm ⁻¹	1585	1596	1589	1590	1576	1590
I_D/I_G	0.92	1.20	0.93	0.95	0.81	0.84

Fig S4. Core-level C 1s XPS spectrum of the FPG

Fig. S5 Nitrogen adsorption/desorption isotherms of Fe_3O_4/GS and (d-inset) pore size distribution with BET surface of 371.9 m² g⁻¹.

Fig. S6 Cyclic performance and coulombic efficiency of FPG at current density of 100 mA g^{-1} .

Reference	Fe ₃ O ₄ morphology	Graphene or graphene derivative	Electrochemical performance		
Our mont	NDa	arran h arr a	1154 mAh g ⁻¹ for 180 cycles (0.1 A g ⁻¹)		
Our work	NPS	graphene	859 mAh g ⁻¹ for 1000 cycles (2 A g ⁻¹)		
1	ND	anan han a	950 mAh g^{-1} for 85 cycles (0.035 A g^{-1})		
-	INPS	graphene	$600 \text{ mAh g}^{-1} \text{ for } 100 \text{ cycles } (0.7 \text{ A g}^{-1})$		
2		aranhana	1280 mAh g ⁻¹ for 100 cycles (0.1C)		
-	INPS	graphene	450 mAh g ⁻¹ (10C 400 & 4C 400 cycles)		
3	NPs	aranhana	637 mAh g^{-1} for 60 cycles (0.2 A g^{-1})		
		graphene	474 mAh g ⁻¹ for 30 cycles (1.6 A g ⁻¹)		
4	NPs	graphana faam	1060 mAh g^{-1} for 85 cycles (0.93 A g^{-1})		
		graphene toam	363 mAh g ⁻¹ for 60 cycles (4.8 A g ⁻¹)		
5	hollow	graphana	940 mAh g^{-1} for 50 cycles (0.2 A g^{-1})		
-	spindle	graphene	660 mAh g^{-1} for 50 cycles (0.5 A g^{-1})		
6	NPs	N doned graphane	1130 mAh g^{-1} for 200 cycles (0.1 A g^{-1})		
Ū		N-doped graphene	648 mAh g ⁻¹ for 40 cycles (1.6 A g-1)		
7	NPs (carbon coating)	graphana	1344 mAh g ⁻¹ for 202 cycles (0.5C)		
		graphene	743 mAh g ⁻¹ for another 200 cycles (2C)		
8	NPs	graphana foam	1200 mAh g ⁻¹ for 500 cycles (1C)		
		graphene toain	300 mAh g ⁻¹ for 50 cycles (20C)		
9	NDc	granhana aarogal	1200 mAh g ⁻¹ for 100 cycles (0.086 A g-1)		
		graphene acroger	577 mAh g ⁻¹ for 300 cycles (5.2 A g ⁻¹)		

 Table S3 Examples of electrochemical performances of Fe₃O₄/graphene composites for LIBs

(a)			(b)			
	Do Doci	Det	7		FPC	G Fo	e ₃ O ₄ /GS
	CPE1	CPE2		R _{SEI}	(Ω) 154		159
				R _{ct} (Ω) 39		90
(c)							
	Cycle number	1	50	100	200	500	1000
	$R_{SEI}(\Omega)$	154	78	75	58	49	25
_	$R_{ct}(\Omega)$	39	51	36	12	3	2

Fig. S7 (a) Equivalent circuit model used for calculation of R_{SEI} and R_{ct} of FPG and Fe₃O₄/GS electrode; (b) R_{SEI} and R_{ct} results for FPG and Fe₃O₄/GS after the 1st discharge process at current density of 2 A g⁻¹; (c) R_{SEI} and R_{ct} results of the FPG at different cycle numbers at current density of 2 A g⁻¹.

References:

- G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu and H.-M. Cheng, *Chemistry of Materials*, 2010, 22, 5306-5313.
- 2. S. K. Behera, *Chemical communications*, 2011, **47**, 10371-10373.
- 3. J. Su, M. Cao, L. Ren and C. Hu, *The Journal of Physical Chemistry C*, 2011, **115**, 14469-14477.
- W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng and K. Mullen, *Advanced materials*, 2013, 25, 2909-2914.
- 5. R. Wang, C. Xu, J. Sun, L. Gao and C. Lin, *Journal of Materials Chemistry A*, 2013, 1, 1794.
- Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng and K. Mullen, *Journal of the American Chemical Society*, 2012, 134, 9082-9085.
- 7. X. Jiang, X. Yang, Y. Zhu, Y. Yao, P. Zhao and C. Li, J. Mater. Chem. A, 2015, 3, 2361-2369.
- X. Hu, M. Ma, M. Zeng, Y. Sun, L. Chen, Y. Xue, T. Zhang, X. Ai, R. G. Mendes, M. H. Rummeli and L. Fu, ACS applied materials & interfaces, 2014, 6, 22527-22533.
- L. Fan, B. Li, D. W. Rooney, N. Zhang and K. Sun, *Chemical communications*, 2015, 51, 1597-1600.