Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe₂O₄ nanocrystals from a carrier solvent assisted interfacial reaction process

Kuan-Ting Lee and Shih-Yuan Lu*

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013,

Taiwan

*Email : SYLu@mx.nthu.edu.tw

Fig. S1. XRD patterns of samples SnFe₂O₄-1 to SnFe₂O₄-4.

Fig. S2. UV-visible spectrum of samples $SnFe_2O_4$ -1 to $SnFe_2O_4$ -4. Inset shows $(\alpha hv)^2$ vs. photon energy plot for bandgap determination.

Fig. S3. HRTEM images of samples $SnFe_2O_4-1$ to $SnFe_2O_4-4$.

Fig. S4. Comparison of nanocrystal sizes for all four SnFe₂O₄ samples, as determined from XRD patterns and HRTEM images.

Fig. S5. N₂ adsorption/desorption isotherms of sample SnFe₂O₄-1.

Fig. S6. C/C_0 versus time curve for RhB solution containing sample SnFe₂O₄-1 without H₂O₂ addition. Inset shows determination of K_{app} .

Fig. S7. C/C_0 versus time curves for RhB solution containing samples SnFe₂O₄-1 to SnFe₂O₄-4 with H₂O₂ addition.

Fig. S8. (a) Absorption spectra of sample SnFe₂O₄-1 suspensions at selected concentrations, (b) correlation curve of absorbance of SnFe₂O₄ suspension at 400 nm vs. SnFe₂O₄ concentration.

Fig. S9. Cycling voltammograms recorded for (a) sample SnFe₂O₄-1, (b) commercial graphite electrode.

Photocatalyst	Fe / Sn (atomic ratio)		
SnFe ₂ O ₄ -1	2.08		
SnFe ₂ O ₄ -2	2.19		
SnFe ₂ O ₄ -3	2.03		
SnFe ₂ O ₄ -4	2.34		

Table S1 Atomic ratios of Fe vs. Sn of samples SnFe₂O₄-1 to SnFe₂O₄-4.

Table S2 Grain sizes and coercivities of samples SnFe₂O₄-1 to SnFe₂O₄-4.

Photocatalyst	Grain size (nm)	Coercivity (Oe)
SnFe ₂ O ₄ -1	3.1	7.5
SnFe ₂ O ₄ -2	4.7	10
SnFe ₂ O ₄ -3	6.3	22
SnFe ₂ O ₄ -4	12.0	4.0

Table S3 Compilation of apparent reaction rate constants for RhB degradation in

Fenton-like processes.

Reference	Type of catalyst	Source of light	Concentration of RhB (mg/L)	Concentration of catalyst(M)	Apparent reaction rate constant; K _{app} (min ⁻¹)
[S1]	BiVO ₄	350W Xe lamp, simulated sunlight	9.58	3.09×10 ⁻³	0.098
This work	SnFe ₂ O ₄	150W Xe lamp, simulated sunlight	10	1.27×10 ⁻⁴	0.13
[82]	BiFeO ₃	500 W Halogen lamp with a cutoff filter (> 420 nm)	4.79	1.6x10 ⁻³	0.056
[83]	g-C ₃ N ₄	500 W Halogen lamp with a cutoff filter (> 420 nm)	4.79	0.5 (g/L)	0.044

[S4]	EuFeO ₃	500 W Xe lamp with a cutoff filter	5	3.9×10 ⁻³	0.002
		(>420 nm)			
[85]	Bi ₂ WO ₆ /Cu ⁰	500 W Xe lamp	4.79	1.4×10-3	0.03
		with a cutoff filter			
		(>420 nm)			
This work	SnFe ₂ O ₄	150W Xe lamp	5	1 27~10-4	0 21/ 0 15
	~2 - 4	simulated sunlight		1.2//10	
		simulated sumght			
		/with a cutoff			
		filter (> 422 nm)			

Table S4. Band structure parameters of SnFe₂O₄ NCs.

sample	$E_{\rm red}$ (V)	LUMO ^a (eV)	HOMO ^b (eV)	λ_{abs}^{c} (nm)	$E_{\rm g}^{\rm d}({\rm eV})$
SnFe ₂ O ₄ -1	-0.28	-4.43	-6.96	505	2.53

^aDetermined by Eq. (1). ^bDetermined from LUMO and band gap energy. ^cMeasured by UV-visible absorption spectrum. ^dEstimated from UV-visible absorption spectrum.

Experimental determination of conduction band position of SnFe₂O₄ NCs:

Here, we determine the conduction band position of $SnFe_2O_4$ NCs with cyclic voltammetry analyses. The working electrode was prepared by drop-casting ethanolic suspension of $SnFe_2O_4$ NCs onto a graphite electrode followed by drying at 60 °C. The counter electrode was Pt coil, and Ag/AgCl served as the reference electrode. The cyclic voltammograms were recorded in an electrolyte of 0.1 M Na₂SO₄(aq) with a negative scan starting from 0.5 to -1.5 V and then back to 0.5 V at a scan rate of 30 mV/s. The LUMO energy (E_{LUMO}) of electroactive materials can be estimated from the onset reduction potential (E_{red}), according to the following equation^[S6,S7]

$$E_{\rm LUMO} = -(E_{\rm red} + 4.71) \, {\rm eV}$$
 (1)

Here, the onset potential is referenced to the Ag/AgCl electrode. The value of 4.71 represents the difference between the vacuum level potential of the normal hydrogen electrode (NHE) and the potential of the Ag/AgCl electrode versus NHE.^[S8,S9] We started from 0.5 V and proceeded with a negative potential scan from 0.5 to -1.5 V and then back to 0.5 V. The onset reduction potentials of sample SnFe₂O₄-1 was thus determined to be -0.28 V as shown in Fig. S9(a). A commercial graphite electrode

was taken as a control, and no reduction peak can be identified under the same testing condition, as shown in Fig. S9(b). The results of relevant band structure data were summarized in Table S4.

References:

[S1]. M. Ge, L. Liu, W. Chen, Z. Zhou, CrystEngComm, 2012, 14, 1038-1044.

[S2]. J. An, L. Zhu, Y. Zhang, H. Tang, *Journal of Environmental Sciences*, 2013, 25, 1213-1225.

[S3]. Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, *Phys. Chem. Chem. Phys.*, 2012, **14**, 1455-1462.

[S4]. L. Ju, Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, J. Am. Ceram. Soc., 2011, 94, 3418-3424.

[S5]. J. Xu, W. Wang, E. Gao, J. Ren, L. Wang, *Catalysis Communications*, 2011, **12**, 834-838.

[S6] K. G. Deepa, J. Nagaraju, Mater. Sci. Eng. B, 2012, 177, 1023-1028.

[S7] K. T. Lee,, S. Y. Lu, J. Phys. Chem. C, 2014, 118, 14457-14463.

[S8] C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, K. B. Devi, *Sens. Actuators B*, 2012, **168**, 263-270.

[S9] S. H. Chang, M. Y. Chiang, C. C. Chiang, F. W. Yuan, C. Y. Chen, B. C. Chiu,
T. L. Kao, C. H. Lai, H. Y. Tuan, *Energy Environ. Sci.* 2011, 4, 4929-4932.