## **Supporting Information**

## Investigating the physical and electrochemical effects of cathodic polarization

## treatment on TaO<sub>x</sub>

Zaenal Awaludin, Mohd Safuan, Takeyoshi Okajima, Takeo Ohsaka\*

Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.



**Fig. S1** S 2p XPS spectra obtained at the bare GC electrode treated by the electrochemical reduction treatment for 30 cycles before and after 1 min of  $Ar^+$  bombardment. This result shows no adsorption of sulfate on the bare GC surface after the electrochemical treatment.



Fig. S2 S 2p XPS spectra obtained at the  $TaO_x/GC$  electrode treated by the CV treatment for 30 cycles before and after Ar<sup>+</sup> etching for 1 min.



Fig. S3 CVs obtained at the  $TaO_x/GC$  (a) and bare GC (b) electrodes in N<sub>2</sub>-saturated 2 M  $H_2SO_4$  at scan rate 20 mV s<sup>-1</sup>.



Fig. S4 S 2p XPS spectra obtained at the  $TaO_x/GC$  electrode before (bottom) and after the CV treatment for 30 cycles (mid), and then followed with oxidation by potential cycling between -0.2 V and 1.23 V in N<sub>2</sub>-saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> at scan rate of 50 mV s<sup>-1</sup> for 10 cycles (top).



**Fig. S5** Ta 4f XPS spectra obtained at the  $TaO_x/GC$  electrode treated by the CV treatment for 1000 cycles before and after Ar<sup>+</sup> etching for 6 min.