Electronic Supplementary Information

Synthesis of tapered tetragonal nanorods of anatase TiO₂ with enhanced photocatalytic activity via a sol-hydrothermal process mediated by H₂O₂ and NH₃

Linlin Zhang,^{a,b} Long Tian,^a Yongxin Liu,^{a,b} Taixing Tan,^{a,b} Dan Liu^a and Cheng Wang^{*a}

a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. Fax: 86-431-85698041; Tel: 86-431-85262770; E-mail: cwang@ciac.ac.cn

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Table S1 Summary of experiments carried out to investigate the effects of the volume of H₂O₂ and NH₃. All these experiments were performed with 20 mg of Ti powder under 200°C for 24 h.

H_2O_2/mL	NH ₃ /mL	H ₂ O/mL	Entry
2	1	12	a
	3	10	b
	5	8	c
	7	6	d
	8	5	e
3	1	11	f
	3	9	g
	5	7	h
	7	5	i
	9	3	j
5	1	9	k
	3	7	1
	5	5	m
	7	3	n
	9	1	0
7	1	7	р
	3	5	q
	5	3	r
	7	1	S
9	1	5	t
	3	3	u
	5	1	v

Fig. S1 SEM images of the synthesized nanocrystals showing shape evolution with contents of H_2O_2 and NH_3 . The detailed synthetic conditions corresponding to each image are displayed in Table S1. All the scale bars are 100 nm.

Fig. S2 SEM images of nanocrystals synthesized with different volume ratios of H_2O_2 to NH_3 (x/y) for 24 h at varied reaction temperatures. For x/y = 2/8: a, 180 °C; d, 160 °C. For x/y = 5/5: b, 180 °C; e, 160 °C. For x/y = 9/1: c, 180 °C; f, 160 °C. All the scale bars are 60 nm.

Fig. S3 SEM images of nanocrystals synthesized with different volume ratios of H_2O_2 to NH_3 (x/y) at 200°C for different reaction durations. For x/y = 2/8: a, 3 h; d, 12 h; g, 24 h; j, 48 h. For x/y = 5/5: b, 3 h; e, 12 h; h, 24 h; k, 48 h. For x/y = 9/1: c, 3 h; f, 12 h; i, 24 h; l, 48 h. All the scale bars are 60 nm.

Fig. S4 XRD patterns of samples synthesized with 9 mL of H_2O_2 and 1 mL of NH_3 at varied reaction temperatures for 24 h (a) and at 200 °C for different reaction durations (b).

Fig. S5 N_2 adsorption-desorption isotherm curves of the samples of $T_{2/8}$, $T_{5/5}$ and $T_{9/1}$.

Fig. S6 SEM (a) and TEM (b) images of anatase TiO_2 nanorods $(T_{9/1})$ loaded with Pt nanoparticles under UV light irradiation. The red circles indicate the locations of Pt nanoparticles.

Fig. S7 Ti 2*p*, O1*s* and N 1*s* X-ray photoelectron spectra (XPS) corresponding to samples of $T_{2/8}$ (a, b and c), $T_{5/5}$ (d, e and f) and $T_{9/1}$ (g, h and i).

Fig. S8 Action spectrum of H_2 evolution for sample of $T_{5/5}$, showing quantum efficiency variation with wavelength of incident light and the corresponding UV-visible absorption spectrum.