Electronic Supplementary Information

Low-temperature fabrication of Cu(I) sites in zeolites by using a vapor-induced reduction strategy

Ju-Xiang Qin, Zhi-Min Wang, Xiao-Qin Liu,* Yu-Xia Li and Lin-Bing Sun*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

*Corresponding author. E-mail: liuxq@njtech.edu.cn; lbsun@njtech.edu.cn.

Experimental Section

Materials.

Cu(II)Y zeolite was prepared by ion exchange of NaY with 0.5 mol/L Cu(NO₃)₂ aqueous solution at 90 °C for 48 h. The amount of Cu(II) in the ion-exchange solution was equivalent to 5-fold cation-exchange capacity. After ion exchange, the zeolite suspension was filtered and the solid was washed thoroughly, followed by dried at 100 °C overnight.

The conversion of Cu(II)Y to Cu(I)Y was conducted by vapour-induced reduction (VIR). About 0.1 g Cu(II)Y was put in a open vial and kept inside an autoclave containing about 1 mL methanol (CH₃OH) with no direct contact between the solid and the solution. The autoclave was then heated at 220 °C for 6 h. After the autoclave rapidly cooled to the room temperature, the vial with powder was taken out quickly, vacuumized by a Schlenk line to remove residual CH₃OH, and kept in the inert atmosphere. The obtained sample was denoted as Cu(I)Y-V.

For the autoreduction (AR) method, 0.1 g Cu(II)Y was treated in an Ar flow at 450 °C for 6 h with a heating rate of 2 °C min⁻¹. The resultant sample was denoted as Cu(I)Y-A.

Characterization.

X-ray diffraction (XRD) patterns of the samples were recorded on a Bruker D8 Advance diffractometer with Cu K α radiation in the 20 range from 5° to 60° at 40 kV and 40 mA. The N₂ adsorption-desorption isotherms were measured using an ASAP 2020 apparatus at –196 °C. Prior to analysis, the samples were evacuated at 200 °C for 4 h. The Brunauer-Emmett-Teller (BET) surface area was calculated at relative pressure ranging from 0.05 to 0.25. The total pore volume was derived from the amount adsorbed at a relative pressure of about 0.99. H₂-temperature programmed reduction (TPR) experiments were carried out on a BELSORP BEL-CAT-A apparatus. For Cu(I)Y-V, the sample were pressed into wafers, broken into small platelets (20-40 mesh) and pretreated at 150 °C under He for 3 h. After cooling to room temperature in the He atmosphere, the gas was switched to 10% H₂/He mixed gas (30 mL min⁻¹). The sample was heated to 1000 °C at a rate of 10 °C min⁻¹.

X-ray photoelectron spectroscopy (XPS) analysis was conducted on a Physical Electronic PHI-550 spectrometer equipped with an Al K α X-ray source (hv=1486.6 eV) operating at 10 kV and 35 mA. The mechanism of reaction was processed in a temperature-programmed apparatus equipped with a mass spectrometer (MS). The temperature of the sample was raised linearly at rate of 2 °C min⁻¹ from room temperature up to 600 °C. CH₃OH was introduced into the sample by the means of Ar bubbling.

Gas adsorption test.

Single component gases adsorption of propylene (C_3H_6) and propane (C_3H_8) were undertaken using an ASAP 2020 analyzer. The samples were degassed at 150 °C for 3 h before analysis, then the sample was back-filled with nitrogen and transferred to the analysis system. Free space was measured using helium (99.999%), assuming that the helium is not adsorbed at the studied temperature. Adsorption isotherms of C_3H_6 and C_3H_8 at 298 K were measured in a water bath.

The adsorption selectivity of propylene over propane on Cu(I)Y can be defined as $S_{ij} = (x_i/y_i)/(x_j/y_j)$, where x_i and x_j are the equilibrated adsorption capacities of components propylene and propane respectively, and y_i and y_j are the molar fractions of components of propylene and propane in gas phases respectively. For the pure propylene and propane adsorption, Dual-Site Langmuir mode (DL) model was chosen to fit their adsorption isotherms. Considering the ideal adsorption solution theory (IAST) can accurately describe gas-mixtures adsorption, the DL-IAST was employed to predict binary gas mixture adsorption on various materials.

Adsorbent	S_{BET} (m ² g ⁻¹)	$rac{V_{ m p}}{({ m cm}^3{ m g}^{-1})}$ –	Cu content ^a (%)		Adsorbed amount ^b (mmol/g)	
			Cu(I)	Cu(II)	Propylene	Propane
NaY	726	0.35	_	_	3.67	3.16
Cu(II)Y	661	0.34	0	100	3.83	2.58
Cu(I)Y-A	624	0.32	41.5	58.5	4.12	2.54
Cu(I)Y-V	598	0.33	86.3	13.7	4.15	1.32

Table S1. Structural properties, Cu content, and adsorption performances of samples.

^{*a*} Calculated from XPS results. ^{*b*} Measured at 298 K and 1 atm..

Table S2. Fitting parameters derived from isothermal data at 25 °C.

Adsorbate	q_c (mmol/g)	q_i (mmol/g)	$\frac{K_c}{(\text{atm}^{-1})}$	K_i (atm ⁻¹)	R^2
Propylene	1.0770	2.6040	14.6750	1562.9120	0.9992
Propane	3.0456	2.8188	46.0693	0.0664	0.9998
Propylene	1.1813	2.6983	7.5004	832.3938	0.9976
Propane	2.5028	532.6053	29.0025	0.0003	0.9984
Propylene	1.1190	3.0950	5.8120	1027.1330	0.9984
Propane	2.4488	824.2950	25.1506	0.0002	0.9996
Propylene	1.0361	3.1318	7.4378	930.1153	0.9982
Propane	1.0674	1.3693	42.1972	0.2516	0.9998
	Adsorbate Propylene Propane Propylene Propylene Propane Propylene Propylene Propylene	Adsorbate q_c (mmol/g)Propylene1.0770Propane3.0456Propylene1.1813Propane2.5028Propylene1.1190Propane2.4488Propylene1.0361Propane1.0674	Adsorbate q_c (mmol/g) q_i (mmol/g)Propylene1.07702.6040Propane3.04562.8188Propylene1.18132.6983Propane2.5028532.6053Propylene1.11903.0950Propane2.4488824.2950Propylene1.03613.1318Propane1.06741.3693	Adsorbate q_c (mmol/g) q_i (mmol/g) K_c (atm ⁻¹)Propylene1.07702.604014.6750Propane3.04562.818846.0693Propylene1.18132.69837.5004Propane2.5028532.605329.0025Propylene1.11903.09505.8120Propane2.4488824.295025.1506Propylene1.03613.13187.4378Propane1.06741.369342.1972	Adsorbate q_c (mmol/g) q_i (mmol/g) K_c (atm ⁻¹) K_i (atm ⁻¹)Propylene1.07702.604014.67501562.9120Propane3.04562.818846.06930.0664Propylene1.18132.69837.5004832.3938Propane2.5028532.605329.00250.0003Propylene1.11903.09505.81201027.1330Propane2.4488824.295025.15060.0002Propylene1.03613.13187.4378930.1153Propane1.06741.369342.19720.2516

A dearb ant	Adsorbed amou	unt (mmol/g)	Equilibrium	Defenence	
Adsorbent	Propylene Propane		Selectivity	Reference	
Cu(I)Y-V	4.15	1.32	3.14	This work	
13X	2.6	2.2	1.18	1	
Li-exchanged 13X	2.5	2.0	1.25	2	
5A	2.5	2.0	1.25	1	
Actived carbon	5.2	4.5	1.15	1	
Silica gel	2.0	1.4	1.43	3	
SBA-15	1.3	1.2	1.08	4	
CuCl/NaX	1.9	1.4	1.36	5	
CuCl/γ-Al ₂ O ₃	0.7	0.2	3.50	6	
SiAl20Cu5 ^a	1.8	1.2	1.50	7	
SiAl20Cu20 ^a	0.9	0.6	1.50	7	
$CuA_{10}B_{1}^{b}$	1.6	0.9	1.78 (10.4) ^c	8	
$CuA_2B_1^b$	3.9	3.0	1.30 (2.7) ^c	8	

Table S3. Adsorbed amount of propylene and propane for some adsorbents.

^{*a*} Cylindrically shaped aluminosilicates with a Si:Al molar ratio of 20 modified with copper loading of 5 % and 20 %; ^{*b*} Cu-functionalized porous organic polymer (POP) by adjusting the molar ratios of monomers 1,4-diethynyl-2,3-dihydroxybenzene (A) and Td-directing tetrakis (4-ethynyl) methane (B) with 10 : 1 and 2 : 1, respectively. ^{*c*} The values in parentheses are IAST selectivity.

References

- 1 H. Jarvelin and J. R. Fair, Ind. Eng. Chem. Res., 1993, 32, 2201.
- 2 C. A. Grande, J. Gascon, F. Kapteijn and A. E. Rodrigues, Chem. Eng. J., 2010, 160, 207.
- 3 C. A. Grande and A. E. Rodrigues, Ind. Eng. Chem. Res., 2001, 40, 1686.
- 4 C. A. Grande, J. D. Araujo, S. Cavenati, N. Firpo, E. Basaldella and A. E. Rodrigues, *Langmuir*, 2004, **20**, 5291.

- 5 A. van Miltenburg, J. Gascon, W. Zhu, F. Kapteijn and J. A. Moulijn, *Adsorption*, 2008, **14**, 309.
- 6 R. Yang and E. Kikkinides, AlChE J., 1995, 41, 509.
- 7 M. Kargol, J. Zajac, D. Jones, J. Rozière, T. Steriotis, A. Jiménez-López and E. Rodríguez-Castellón, *Chem. Mater.*, 2005, **17**, 6117.
- 8 M. H. Weston, Y. J. Colón, Y.-S. Bae, S. J. Garibay, R. Q. Snurr, O. K. Farha, J. T. Hupp and S. T. Nguyen, *J. Mater. Chem.* A, 2014, 2, 299.

Figure S1. XRD patterns of NaY, Cu(II)Y, Cu(I)Y-A, and Cu(I)Y-V samples.

Figure S2. N₂ adsorption-desorption isotherms of NaY, Cu(II)Y, Cu(I)Y-A, and Cu(I)Y-V samples. Curves are plotted offset for clarity.

Figure S3. XPS spectra of Cu $2p_{3/2}$ for Cu(I)Y-A.

Figure S4. XPS spectra of Cu 2p_{3/2} for Cu(I)Y-V.

Figure S5. Adsorption isotherms of propylene and propane on NaY.

Figure S6. Adsorption isotherms of propylene and propane on Cu(II)Y.

Figure S7. Adsorption isotherms of propylene and propane on Cu(I)Y-A.

Figure S8. MS-monitored temperature programmed reaction of methanol vapor with Cu(II)Y.