Electronic Supplementary Information

Low-temperature fabrication of Cu(I) sites in zeolites by using a vapor-induced reduction strategy

Ju-Xiang Qin, Zhi-Min Wang, Xiao-Qin Liu,* Yu-Xia Li and Lin-Bing Sun*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

*Corresponding author. E-mail: liuxq@njtech.edu.cn; lbsun@njtech.edu.cn.

Experimental Section

Materials.

 $Cu(II)Y$ zeolite was prepared by ion exchange of NaY with 0.5 mol/L Cu(NO3)₂ aqueous solution at 90 °C for 48 h. The amount of $Cu(II)$ in the ion-exchange solution was equivalent to 5-fold cation-exchange capacity. After ion exchange, the zeolite suspension was filtered and the solid was washed thoroughly, followed by dried at 100 °C overnight.

The conversion of Cu(II)Y to Cu(I)Y was conducted by vapour-induced reduction (VIR). About 0.1 g Cu(II)Y was put in a open vial and kept inside an autoclave containing about 1 mL methanol (CH3OH) with no direct contact between the solid and the solution. The autoclave was then heated at 220 $\rm{^{\circ}C}$ for 6 h. After the autoclave rapidly cooled to the room temperature, the vial with powder was taken out quickly, vacuumized by a Schlenk line to remove residual CH3OH, and kept in the inert atmosphere. The obtained sample was denoted as $Cu(I)Y-V$.

For the autoreduction (AR) method, 0.1 g Cu(II)Y was treated in an Ar flow at 450 °C for 6 h with a heating rate of 2 $^{\circ}$ C min⁻¹. The resultant sample was denoted as Cu(I)Y-A.

Characterization.

X-ray diffraction (XRD) patterns of the samples were recorded on a Bruker D8 Advance diffractometer with Cu Kα radiation in the 2θ range from 5˚ to 60˚ at 40 kV and 40 mA. The N₂ adsorption-desorption isotherms were measured using an ASAP 2020 apparatus at −196 °C. Prior to analysis, the samples were evacuated at 200 °C for 4 h. The Brunauer-Emmett-Teller (BET) surface area was calculated at relative pressure ranging from 0.05 to 0.25. The total pore volume was derived from the amount adsorbed at a relative pressure of about 0.99. H2-temperature programmed reduction (TPR) experiments were carried out on a BELSORP BEL-CAT-A apparatus. For Cu(I)Y-V, the sample were pressed into wafers, broken into small platelets (20-40 mesh) and pretreated at 150 $^{\circ}$ C under He for 3 h. After cooling to room temperature in the He atmosphere, the gas was switched to 10% H2/He mixed gas (30 mL min⁻¹). The sample was heated to 1000 °C at a rate of 10 °C min⁻¹.

X-ray photoelectron spectroscopy (XPS) analysis was conducted on a Physical Electronic PHI-550 spectrometer equipped with an Al K α X-ray source (hv=1486.6 eV) operating at 10 kV and 35 mA. The mechanism of reaction was processed in a temperature-programmed apparatus equipped with a mass spectrometer (MS). The temperature of the sample was raised linearly at rate of 2 $\rm{°C}$ min⁻¹ from room temperature up to 600 $\rm{°C}$. CH₃OH was introduced into the sample by the means of Ar bubbling.

Gas adsorption test.

Single component gases adsorption of propylene (C_3H_6) and propane (C_3H_8) were undertaken using an ASAP 2020 analyzer. The samples were degassed at 150 °C for 3 h before analysis, then the sample was back-filled with nitrogen and transferred to the analysis system. Free space was measured using helium (99.999%), assuming that the helium is not adsorbed at the studied temperature. Adsorption isotherms of C_3H_6 and C_3H_8 at 298 K were measured in a water bath.

The adsorption selectivity of propylene over propane on Cu(I)Y can be defined as S_{ij} = $(x_i/y_i)/(x_i/y_i)$, where x_i and x_j are the equilibrated adsorption capacities of components propylene and propane respectively, and *yi* and *yj* are the molar fractions of components of propylene and propane in gas phases respectively. For the pure propylene and propane adsorption, Dual-Site Langmuir mode (DL) model was chosen to fit their adsorption isotherms. Considering the ideal adsorption solution theory (IAST) can accurately describe gas-mixtures adsorption, the DL-IAST was employed to predict binary gas mixture adsorption on various materials.

Adsorbent		SBET V_p (m ² g ⁻¹) (cm ³ g ⁻¹)	Cu content ^a $(\%)$		Adsorbed amount ^b (mmol/g)	
			Cu(I)	Cu(II)	Propylene	Propane
NaY	726	0.35			3.67	3.16
Cu(II)Y	661	0.34	$\boldsymbol{0}$	100	3.83	2.58
$Cu(I)Y-A$	624	0.32	41.5	58.5	4.12	2.54
$Cu(I)Y-V$	598	0.33	86.3	13.7	4.15	1.32

Table S1. Structural properties, Cu content, and adsorption performances of samples.

^a Calculated from XPS results. *^b* Measured at 298 K and 1 atm..

Table S2. Fitting parameters derived from isothermal data at 25 °C.

Adsorbent	Adsorbate	q_c (mmol/g)	q _i (mmol/g)	K_c (atm^{-1})	K_i (atm^{-1})	R^2
NaY	Propylene	1.0770	2.6040	14.6750	1562.9120	0.9992
	Propane	3.0456	2.8188	46.0693	0.0664	0.9998
Cu(II)Y	Propylene	1.1813	2.6983	7.5004	832.3938	0.9976
	Propane	2.5028	532.6053	29.0025	0.0003	0.9984
$Cu(I)Y-A$	Propylene	1.1190	3.0950	5.8120	1027.1330	0.9984
	Propane	2.4488	824.2950	25.1506	0.0002	0.9996
$Cu(I)Y-V$	Propylene	1.0361	3.1318	7.4378	930.1153	0.9982
	Propane	1.0674	1.3693	42.1972	0.2516	0.9998

Table S3. Adsorbed amount of propylene and propane for some adsorbents.

a Cylindrically shaped aluminosilicates with a Si:Al molar ratio of 20 modified with copper loading of 5 % and 20 %; ^{*b*} Cu-functionalized porous organic polymer (POP) by adjusting the molar ratios of monomers 1,4-diethynyl-2,3-dihydroxybenzene (A) and Td-directing tetrakis (4-ethynyl) methane (B) with $10:1$ and $2:1$, respectively. c The values in parentheses are IAST selectivity.

References

- 1 H. Jarvelin and J. R. Fair, *Ind. Eng. Chem. Res.*, 1993, **32**, 2201.
- 2 C. A. Grande, J. Gascon, F. Kapteijn and A. E. Rodrigues, *Chem. Eng. J.*, 2010, **160**, 207.
- 3 C. A. Grande and A. E. Rodrigues, *Ind. Eng. Chem. Res.*, 2001, **40**, 1686.
- 4 C. A. Grande, J. D. Araujo, S. Cavenati, N. Firpo, E. Basaldella and A. E. Rodrigues, *Langmuir*, 2004, **20**, 5291.
- 5 A. van Miltenburg, J. Gascon, W. Zhu, F. Kapteijn and J. A. Moulijn, *Adsorption*, 2008, **14**, 309.
- 6 R. Yang and E. Kikkinides, *AlChE J.*, 1995, **41**, 509.
- 7 M. Kargol, J. Zajac, D. Jones, J. Rozière, T. Steriotis, A. Jiménez-López and E. Rodríguez-Castellón, *Chem. Mater.*, 2005, **17**, 6117.
- 8 M. H. Weston, Y. J. Colón, Y.-S. Bae, S. J. Garibay, R. Q. Snurr, O. K. Farha, J. T. Hupp and S. T. Nguyen, *J. Mater. Chem. A*, 2014, **2**, 299.

Figure S1. XRD patterns of NaY, Cu(II)Y, Cu(I)Y-A, and Cu(I)Y-V samples.

Figure S2. N₂ adsorption-desorption isotherms of NaY, Cu(II)Y, Cu(I)Y-A, and Cu(I)Y-V samples. Curves are plotted offset for clarity.

Figure S3. XPS spectra of Cu 2p3/2 for Cu(I)Y-A.

Figure S4. XPS spectra of Cu 2p3/2 for Cu(I)Y-V.

Figure S5. Adsorption isotherms of propylene and propane on NaY.

Figure S6. Adsorption isotherms of propylene and propane on Cu(II)Y.

Figure S7. Adsorption isotherms of propylene and propane on Cu(I)Y-A.

Figure S8. MS-monitored temperature programmed reaction of methanol vapor with $Cu(II)Y.$