Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

Synthesis of LiMnPO₄/C with superior performance as Li-ion battery cathode by

a two-stage microwave solvothermal process

Jian-Nan Zhu, Wen-Cui Li, Fei Cheng and An-Hui Lu *

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University

of Technology, Dalian 116024, P. R. China

E-mail: anhuilu@dlut.edu.cn, Fax: (+86)-411-84986112

Table 51. Synthesized samples used in this study.					
Sample	Synthesis temp. / °C	Synthesis time / min			
MW-160-03	160	3			
MW-160-10	160	10			
MW-160-30	160	30			
MW-180-10	180	10			
MW-200-10	200	10			
LMP/NC	C-coated MW-160-10 using dopamine as carbon source				
LMP/C	C-coated MW-160-10 using glucose as carbon source				
Pure-LMP	Pure MW-160-10 without a carbon coating				

Table S1. Synthesized samples used in this study.

Table S2. Elemental analysis results.

Sample —	Element content			
	N (wt%)	C (wt%)	H (wt%)	
LMP/C	0.05	7.98	0.33	
LMP/NC	1.18	5.97	0.40	
MW-160-03/C	1.12	6.18	0.22	
MW-160-30/C	1.07	5.37	0.19	
MW-180-10/C	1.10	5.45	0.20	
MW-200-10/C	1.08	5.97	0.23	

Fig. S1. Powder X-ray diffraction patterns of the carbon-coated LiMnPO₄ obtained under different conditions.

Fig. S2 The impedance spectra for samples under different condition assembled in coin cell.

Fig. S3 (a-c) the TEM and FFT of sample MW-160-03/C, (d-e) the TEM and FFT of sample MW-160-30/C.

Fig. S4. The TG analysis results.

Calculation of the carbon content

For the sample of LMP/NC, there is 91.8 wt% of residue after pyrolysis at 800 °C in air, and for the pure LMP, it is 97 wt%.

By assuming that the carbon content is x.

(1-x)*0.97+x*0=0.918 Thus, x=5.4%.

So the carbon content of the three samples are separately 5.4 wt% (LMP/NC), 7.1 wt% (LMP/C), and 3 wt% (Pure-LMP).

Lithium ion diffusion coefficient:

$$D_{Li^+} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(Eq. S1)

The lithium ion diffusion coefficient (D_{Li^+}) has been calculated for all samples using the **Eq. S1**, where R is the gas constant, T is the absolute temperature, A is the contact area of the electrode (2.01 cm²), n is the number of electrons per molecule, F is the Faraday constant, C is the concentration of Li⁺ ions (6.38×10⁻³ mol cm⁻³, ratio

between the tap density of the prepared material and molecular weight) and σ is the Warburg coefficient associated with the slope of the linear fits between Z_{re} and the reciprocal square root of the angular frequency in the low frequency region.

Synthesis process	Cycle performance	Rate performance	Reference
Solvothermal method	Charge 0.5 C	Charge 10 C	Journal of Materials
	Discharge 0.5 C	Discharge 10 C	Chemistry A
	134 mA h g ⁻¹ after 100 cycles	108 mA h g ⁻¹	[16]
Solid state reaction	Charge 0.02 C Discharge 0.2 C 130 mA h g ⁻¹ after 50 cycles	Charge 0.02 C Discharge 10 C 35 mA h g ⁻¹	Nano Letters [33]
Impregnation	Charge 0.1 C	Charge 0.1 C	Advanced Energy
	Discharge 1 C	Discharge 10 C	Material
	155 mA h g ⁻¹ after 50 cycles	110 mA h g ⁻¹	[40]
Ultrasonic spray pyrolysis	Charge 0.05 C Discharge 0.5 C 130 mA h g ⁻¹ after 50 cycles	Charge 0.1 C Discharge 10 C 58 mA h g ⁻¹	Advanced Functional Material [41]
Microwave	Charge 0.5 C	Charge 10 C	This work
solvothermal	Discharge 0.5 C	Discharge 10 C	
method	154 mA h g ⁻¹ after 100 cycles	118 mA h g ⁻¹	

Table S3. Comparison of the electrochemical data of LMP in literature

References:

40. H. Yoo, M. Jo, B.-S. Jin, H.-S. Kim and J. Cho, *Adv. Energy Mater.*, 2011, 1, 347–351.
41. S.-M. Oh, S.-W. Oh, C.-S. Yoon, B. Scrosati, K. Amine and Y.-K. Sun, *Adv. Funct. Mater.*, 2010, 20, 3260–3265.