Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary information

Highly active and selective Ti-incorporated porous silica catalysts derived from grafting of

titanium(IV) acetylacetonate

Miki Fukuda,^a Nao Tsunoji,^a* Yuya Yagenji,^a Yusuke Ide,^b Shinjiro Hayakawa,^a Masahiro Sadakane^a and

Tsuneji Sano^a*

⁺Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-

Hiroshima 739-8527, Japan

[‡]World Premier International (WPI) Research Center, International Center for Materials

Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-

0044, Japan

*Corresponding authors: e-mail: theating-unable (the second sec

Table S1. Characteristics of Ti-MCM-41 catalysts synthesized using titanium isopropoxide and titanium butoxide as Ti

source

	Si/Tiª	BET surface area ^b (m ² ·g ⁻¹)	Mesopore volume ^c (cm ³ ·g ⁻¹)	Pore diameter ^c (nm)
Ti(isoPrO)-MCM-41	27	936	0.82	2.7
Ti(BuO)-MCM-41	38	925	0.83	2.8

^a Calculated by energy dispersive X-ray spectrometry.

^b Determined using the BET method.

^c Determined using the BJH plot.

Table S2. Catalytic performances of Ti(isoPrO)-MCM-41 and Ti(BuO)-MCM-41 in the epoxidation of cyclohexene with

tert-butyl hydroperoxide as an oxidant.^a

		Epoxide yield (%)	Epoxide selectivity	TOF (mol product _{cyclohexane}
	Conversion (%)		(%)	_{oxide} mol _{Ti} ⁻¹ ·h ⁻¹)
Ti(isoPrO)-MCM-41	3.7	1.8	49	15
Ti(BuO)-MCM-41	38.2	15.0	39	177

^a Reaction conditions: catalyst, 10 mg; acetonitrile, 10 mL; cyclohexene, 10 mmol; *tert*-butyl hydroperoxide, 10 mmol;

temp., 60 °C; time, 2 h.

Figure S1. ¹H MAS NMR spectra of (a) MCM-41 and (b) Ti(acac)-MCM-41.

Figure S2. (left) XRD patterns, (center) N_2 adsorption isotherms, and (right) BJH pore size distributions of (a) Ti-MCM-41(Ref.), (b) HUS-6, (c) Ti(acac)-HUS-6, (d) SBA-15, and (e) Ti(acac)-SBA-15.

Figure S3. ²⁹Si MAS NMR spectra of (a) HUS-6, (b) Ti(acac)-HUS-6, (c) SBA-15, and (d) Ti(acac)-SBA-15.

Figure S4. FT-IR spectra of (a) HUS-6, (b) Ti(acac)-HUS-6, (c) SBA-15, and (d) Ti(acac)-SBA-15.

Figure S5. UV-vis spectra of (a) Ti(acac)-HUS-6 and (b) Ti(acac)-SBA-15.

Figure S6. UV-vis spectrum of Ti(acac)-MCM-41 after reaction with large amount of acetylacetone (acetylacetone/Ti = 260).

Figure S7. Catalytic reusability of (black) Ti(acac)-MCM-41, (grey) Ti(acac)-MCM-41cal, and (white) Ti-MCM-41(Ref.). Reaction conditions: catalyst, 50 mg; acetonitrile, 5 mL; cyclohexene, 5 mmol; *tert*-butyl hydroperoxide, 5 mmol; temp., 60 °C; time, 0.5 h.

Figure S8. UV-vis spectra of Ti(acac)-MCM-41 after epoxidation of cyclohexene: (a) 1st run, (b) 2nd run, and (c) 3rd run.

Figure S9. (A) XRD patterns, (B) N₂ adsorption isotherms, and (C) BJH pore size distributions of (a) Ti(isoPrO)-MCM-41 and (b) Ti(BuO)-MCM-41.

Figure S10. UV-vis spectra of (A) Ti(isoPrO)-MCM-41 and (B) Ti(BuO)-MCM-41 (a) before and (b) after epoxidation reaction.

Figure S11. XANES spectra of (a) Ti(isoPrO)-MCM-41 and (b) Ti(BuO)-MCM-41.