Electronic Supplementary Information

Three-dimensional honeycomb-like hierarchical structured carbon for High-performance supercapacitors derived from high-ash-content sewage sludge

Haobin Feng,^a Mingtao Zheng,^{*a,b} Hanwu Dong,^a Yong Xiao,^b Hang Hu,^a Zhongxin Sun,^a Chao

Long,^a Yijin Cai,^a Xiao Zhao,^a Haoran Zhang,^b Bingfu Lei^{a,b} and Yingliang Liu^{*a,b}

^a Department of Materials Science and Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, china. E-mail: mtzheng@scau.edu.cn (M. Zheng), tliuyl@scau.edu.cn (Y. Liu); Tel/Fax: +86 20 8528 0319.

^b Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, Guangzhou 510642, China.

Content (wt. %)	Moisture	Ash	Volatil e matter	Fixed carbon	С	Н	N	0	Si
SS	2.39	69.33	27.30	0.98	11.59	2.52	1.96	12.21	24.48
FSC	0.00	9.24	21.02	66.74	50.61	2.01	1.52	28.62	0.24
HSC-3	0.00	0.32	12.22	87.46	84.61	1.71	1.39	11.97	0.00

Table S1 Proximate and ultimate analyses of sewage sludge (SS) and HSC-3

The proximate analysis was conducted according to ASTM E1755-01, ASTM E871-82 and ASTM E872-82 standards. For moisture determination, 1.0 g sample was taken in a crucible and placed in a muffle furnace at 105 °C for 2 h. The loss in weigh after drying was given as the moisture. In the same way, the conditions for ash and volatile matter determination were 575 ± 10 °C for 4 h and 950 ± 10 °C for 7 min, respectively. After each analysis, the crucible was removed from the furnace and placed in the desiccator until room temperature and weighed. Fixed carbon was calculated from: 100 % - moisture % - ash % - volatile matter %. Common organic elements such as C, H and N present in samples were determined through an EA2400 II elemental analyzer. The content of O was calculated from: 100 % - ash % - C % -H % - N %. The content of Si was measured by X-ray fluorescence (JSX-3400R, JEOL).

Fig. S1 XRD pattern of SS, SC and FSC.

Fig. S2 FESEM images of SS (a), SC (b), FSC (c), and ASC (d).

Fig. S3 SEM image of the as-resulted ASC samples from different pre-treatment process (similar to fly-silicon) of SC before KOH activation: (a) hydrochloric acid, (b) nitric acid, (c) sulfuric acid, and (d) KOH.

Sample	$S_{BET}^{a}[m^{2} g^{-}]$	S _{micro} ^b [m ² g ⁻	V _{pore} ^c [cm ³ g ⁻	V _{micro} ^d [cm ³ g ⁻	D _{aver} ^e
	1]	1]	1]	1]	[nm]
SC	31	0	0.008	0	110.44
FSC	111	24	0.269	0.016	9.67
ASC	1272	788	0.903	0.406	2.93
HSC-1	550	382	0.509	0.189	3.81
HSC-2	2125	1306	1.827	0.647	3.53
HSC-3	2839	1218	2.652	0.681	3.73
HSC-4	1001	406	1.308	0.213	5.16

Table S2 Pore characteristics of SC, FSC, ASC, and HSC samples

a BET surface area.

b Surface area of micropores, NLDFT method.

c Volume of pores at $p/p^0 = 0.98$.

d Volume of micropores, NLDFT method.

e Average pore diameter, 4V/A by BET.

Fig. S4 Specific capacitance of HSC-3 and ASC at different scan rate.

Fig. S5 Nyquist plots of HSC-3 electrode before and after 20 000 cycles.

Materials	BET surface area (m ² g ⁻¹)	Capacitance (F g ⁻¹)	Current density (A g ⁻¹)	Electrolyte	Reference no.
Fermented rice	2106	250	2	6 M KOH	[1]
Waste tea-leaves	2841	270	2	2 M KOH	[2]
Human hair	1104	220	2	6 M KOH	[3]
Human hair	1306	280	2	6 M KOH	[4]
Carrageenan	2502	210	2	6 M KOH	[5]
Waste wood	3223	250	2	$1 \text{ M H}_2 \text{SO}_4$	[6]
Enteromorpha prolifera	2405	260	2	30 % KOH	[7]
Chitosan	1579	280	2	6 M KOH	[8]
Willow catkins	1586	275	2	6 M KOH	[9]
Pomelo peel	2725	260	2	6 M KOH	[10]
Sewage Sludge	2839	340	2	6 M KOH	This work

Table S3 Comparison of the supercapacitive properties of carbonaceous materials

derived from waste biomass

Fig. S6 N₂ adsorption-desorption isothermal (a) and pore size distribution calculated from the adsorption branch of the isotherm by NLDFT method (b) of HSC-1, HSC-2, HSC-3 and HSC-4. CV measurements (c) and GCD curves (d) of HSC samples.

Fig. S7 Specific capacitance of HSC-3//HSC-3 symmetric supercapacitor calculated from cyclic curves (a) and galvanostatic charge/discharge curves (b).

References

- S. Gao, Y. Chen, H. Fan, X. Wei, C. Hu, H. Luo and L. Qu, J. Mater. Chem. A, 2014, 2, 3317-3324.
- C. Peng, X.-B. Yan, R.-T. Wang, J.-W. Lang, Y.-J. Ou and Q.-J. Xue, *Electrochimica Acta*, 2013, 87, 401-408.
- W. Si, J. Zhou, S. Zhang, S. Li, W. Xing and S. Zhuo, *Electrochimica Acta*, 2013, 107, 397-405.
- 4. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, *Energ. Environ. Sci.*, 2014, 7, 379-386.
- 5. Y. Fan, X. Yang, B. Zhu, P.-F. Liu and H.-T. Lu, J. Power Sources, 2014, 268, 584-590.
- 6. Z. Jin, X. D. Yan, Y. H. Yu and G. J. Zhao, J. Mater. Chem. A, 2014, 2, 11706-11715.
- X. Gao, W. Xing, J. Zhou, G. Wang, S. Zhuo, Z. Liu, Q. Xue and Z. Yan, *Electrochim. Acta*, 2014, 133, 459-466.
- L. Sun, Y. Fu, C. G. Tian, Y. Yang, L. Wang, J. Yin, J. Ma, R. H. Wang and H. G. Fu, *ChemSusChem*, 2014, 7, 1637-1646.
- 9. K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo and L. Liu, *Electrochim. Acta*, 2015, **166**, 1-11.
- 10. Q. Liang, L. Ye, Z.-H. Huang, Q. Xu, Y. Bai, F. Kang and Q.-H. Yang, *Nanoscale*, 2014, 6, 13831-13837.