Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Cyclodextrin-based supramolecular polymeric nanoparticles for next generation gas separation membranes

Shereen Tan, ^{‡a} Qiang Fu, ^{‡a,b} Joel. M. P. Scofield,^{a,b} Jinguk Kim,^{a,b} Paul A. Gurr,^a Katharina Ladewig,^a Anton Blencowe,^{c,d} Greg. G. Qiao^{*a,b}

^a Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.

^b Cooperative Research Centre for Greenhouse Gas Technologies, The University of Melbourne, Parkville, VIC 3010, Australia.

^c Mawson Institute, Division of ITEE, The University of South Australia, Mawson Lakes, SA 5095, Australia.

^d School of Pharmacy and Medical Sciences, Division of Health Sciences, The University of South Australia, Adelaide, SA 5001, Australia.

*e-mail: gregghq@unimelb.edu.au

[‡] These authors contributed equally.

1. Experimental section

1.1 Methods:

Synthesis of 3-azidopropyl anthrancene-9-carboxylate

3-Azidopropyl anthracene-9-carboxylate was synthesised according to the literature.^[1] ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.09 (*quin*, 2H, *J* = 6.4 Hz, CH₂), 3.45 (*t*, 2H, *J* = 5.2 Hz, OCH₂), 4.67 (t, 2H, *J* = 5.2 Hz, CH₂N₃), 7.44-7.54 (*m*, 4H, 4ArH), 7.99-8.01 (*m*, 4H, 4ArH), 8.48 (*s*, 1H, ArH) ppm.

Synthesis of α, ω -dialkyne PEG_{10K}

α,ω-Dialkyne PEG_{10K} was synthesised according to the literature.^[2] ¹H NMR (400 MHz, d_6 -DMSO): δ_H 1.69 (*quin*, J = 7.2 Hz, CH₂CH₂CH₂ end-group), 2.20 (*dt*, J = 2.8 & 7.2 Hz, - CCH₂ end-group), 2.40 (*t*, J = 7.2 Hz, CH₂CO end-group), 2.80 (*t*, J = 2.8 Hz, C≡CH end-group), 3.69–3.30 (*m*, CH₂O), 4.14–4.11 (*m*, CH₂OCO end-group) ppm. MALDI ToF MS: M_n = 11.3 kDa, GPC-MALLS (DMF): PDI = 1.32.

1.2 Density Experiments

Densities of dense membranes were determined by the buoyancy method according to the literature ^[3] in hexane with a known density of 0.659 g.mL⁻¹ at 20 °C. The following equation was used to calculate density where W_a and W_h is the membrane weight in air and hexane, respectively. Membranes were dried in a vacuum oven at 40°C for 24 h before being weight in air.

$$\rho = \frac{W_a}{W_a - W_h} \rho_{solvent}$$

Scheme S1. Synthetic outline showing the prepartion of the SNP precursors (a) PRX P0,(b) PRX-g-PDMS P1 and (c) PEG-g-PDMS P2.

Figure S1. ¹H NMR spectrum (*d*₆-DMSO, 400 MHz) of anthracene end-capped polyrotaxane **P0**.

Figure S2. ¹H NMR spectrum (*d*₆-DMSO, 400 MHz) of the PDMS functionalised PRX **P1**.

Figure S3. ¹H NMR spectrum (d_6 -DMSO, 400 MHz) of the PEG-*g*-PDMS **P2**.

Figure S4. Kinetic study of **SNP1** using DLS measurements (number) at 0, 5 and 10 min at 25 °C after self-assembly at 40 °C.

Figure S5. Density of the pure Pebax[®] 2533, Pebax[®] 2533/**SNP2**-15wt% and Pebax[®] /**SNP1**-15wt% dense membranes.

Table S1. Gas separation performance of the selective layer of TFC membranes at 35 °Cand 340 kPa.

Entry	Sample code	Additive (wt%)	Selective Layer		
			J (CO ₂) ^a (GPU)	P (CO ₂) ^b (Barrer)	CO ₂ /N ₂ Selectivity
1	Pebax®	0	556	167	27
2	Pebax®/ SNP0- 15wt%	15	-	-	-
3	Pebax®/ SNP1- 10wt%	10	1,000	300	27
4	Pebax®/ SNP1- 15 wt%	15	1,420	426	25
5	Pebax [®] / SNP1 -20 wt%	20	1,990	597	22
6	Pebax [®] / SNP1 -30 wt%	30	3,310	993	19
7	Pebax [®] / SNP2- 15 wt%	15	-	-	-
8	Pebax [®] / CD- 15 wt%	15	-	-	-
9	Pebax [®] / PDMS- 15 wt%	15	-	-	-

Figure S6. (a) CO₂ permeance and (b) CO₂/N₂ selectivity of the selective layer of TFC membranes as a function of P1 content (wt% relative to Pebax[®]) determined at 35 °C and 340 kPa. (c) Trade-off plot between CO₂/N₂ selectivity and CO₂ permeance for Pebax[®] and Pebax[®]/SNP1 TFC membranes. The target area is that proposed by Merkel

et al.^[1]

References

- 1. J. M. Ren, J. T. Wiltshire, A. Blencowe, G. G. Qiao, *Macromolecules*, **2011**, 44, 3189-3202
- 2. S. Tan, A. Blencowe, K. Ladewig, G. G. Qiao, Soft Matter, 2013, 9, 5239-5250
- 3. A. Car, C. Stropnik, W. Yave, K-V. Peinemann, *Journal of Membrane Science*, **2008**, 307, 88.

[1] T. C. Merkel, H. Lin, X. Wei, R. Baker, Journal of Membrane Science 2010, 359, 126.