Electronic Supplementary Information

Morphology-dependent performance of Zn₂GeO₄ as high-performance anode material for rechargeable lithium ion battery

Yi Feng,^a Xiaodan Li,^b Zongping Shao^c and Huanting Wang^{*a}

^a Department of Chemical Engineering, Monash University, Clayton Victoria, 3800, Australia.

^bDepartment of Renewable Energy, North China Electric Power University, Beijing 102206, China

^cState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing Tech University, Nanjing 211816 , China

Figure S1 XRD patterns of Zn_2GeO_4 nanoparticles before and after sintering at 300 °C in Ar.

Figure S2 XRD patterns of Zn₂GeO₄ nanorods before and after sintering at 300 °C in Ar.

Figure S3 TEM image of Zn_2GeO_4 nanoparticles (a) before and (b) after sintering at 300 °C .