Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

WO₃ based solid solution oxide – promising proton exchange membrane fuel cell anode electro-catalyst

Prasad Prakash Patel¹, Prashanth H. Jampani², Moni Kanchan Datta^{2,3}, Oleg I. Velikokhatnyi^{2,3},

Daeho Hong², James A. Poston⁴, Ayyakkannu Manivannan⁴, Prashant N. Kumta^{1,2,3,5,6*}

¹Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

²Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

³Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261, USA.

⁴US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507.

⁵Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.

⁶School of Dental Medicine, University of Pittsburgh, PA 15217, USA.

*Corresponding author: Prashant N. Kumta (pkumta@pitt.edu)

Department of Bioengineering, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261.

Tel: +1-412-648-0223, Fax: +1-412-624-3699

This abstract was presented at the 2014 AIChE annual meeting in Atlanta, GA (November 16-21, 2014).

Section S1: The possible reaction scheme for the formation of WO_3 from sodium tungstate dehydrate (Na₂WO₄.2H₂O) is given as ¹:

$$Na_2WO_4 + 2HCl \rightarrow H_2WO_4 + 2NaCl$$

$$H_2WO_4 \rightarrow WO_3 + H_2O$$

In the synthesis of WO₃ from Na₂WO₄.2H₂O, hydrated tungsten trioxide (H₂WO₄) is obtained as a precipitate and forms pure WO₃ upon further heat treatment. To determine the temperature of heat-treatment of H₂WO₄ and thus, to obtain pure WO₃, thermogravimetric analysis (TGA) was conducted in ultra-high purity Argon (UHP-Ar) atmosphere (Flow rate=40 ml/min) as shown in **Fig. S1**. TGA results show that there is a steady loss in weight upto ~320°C indicative of a transformation of H₂WO₄ to WO₃ (expected weight loss ~7.2%). Hence, heat-treatment of H₂WO₄ was carried out at 350°C for 2 h to obtain pure WO₃.

Figure S1: TGA plot of H₂WO₄ powder in UHP-Argon atmosphere showing the weight loss.

Figure S2: Method of multiple small potential steps used on the RDE to reduce the contribution by charging current and current measurement was performed at the end of each step².

Figure S3: Tafel plot of $(W_{0.8}Ir_{0.2})O_y$, before and after iR_{Ω} correction.

Figure S4: Tafel plot of $(W_{0.7}Ir_{0.3})O_y$, before and after iR_{Ω} correction.

Figure S5: Tafel plot of IrO_2 , before and after iR_{Ω} correction.

Figure S6: Tafel plot of Pt/C, before and after iR_{Ω} correction.

Figure S7: The linear scan voltammogram (LSV) curves for HOR of Pt/C obtained on rotating disk electrode (RDE) at different rotating speeds, measured in H₂ saturated 0.5 M H₂SO₄ solution at 40^oC with a scan rate of 10 mV/sec. Koutechy-Levich plot of Pt/C is shown in the inset of

LSV curve.

References:

- 1. M. Nagarajan, G. Paruthimal kalaignan and G. A. Pathanjali, *International Journal of Hydrogen Energy*, 2011, 36, 14829-14837.
- 2. P. P. Patel, M. K. Datta, O. I. Velikokhatnyi, P. Jampani, D. Hong, J. A. Poston, A. Manivannan and P. N. Kumta, *Journal of Materials Chemistry A*, 2015, 3, 14015-14032.