Supporting information for

Stable Inverse Opal Structure of Cadmium Chalcogenide for Efficient Water Splitting

Yi-Ren Lu,^{‡,} Peng-Fei Yin,[‡] Jing Mao, Meng-Jiao Ning, Yu-Zhu Zhou, Cun-Ku Dong, Tao Ling* and

Xi-Wen Du*

[‡] These authors contribute equally to this work.

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and

Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Supplementary Figures

Figure S1. Schematic diagram on the fabrication of CdS IOs.

Figure S2. Side-view SEM image of the final CdS IOS.

Figure S3. Characterizations of IOS. (a) low magnification and (b) high magnification TEM images, the insert of (a) is a SAED pattern, (c) HRTEM image.

Figure S4. Absorbance spectra of IOS and film with and without ED processing.

Figure S5. PEC response of original CdS IOS. (a) Linear sweep voltammograms measurements under 1 sun AM1.5 illumination and in the dark. (b) Photocurrent stability of the IOS photoanode at 0 V versus RHE under AM 1.5 illumination.

Figure S6. Characterizations of the CdS film. (a) the top-view and (b) side-view SEM images, (c) XRD pattern.

Figure S7. Cross-section SEM image of planar CdS film after ED and subsequent calcination.

Figure S8. PEC response of original and treated CdS film. (a) Linear sweep voltammograms measurements under 1 sun AM1.5 illumination and in the dark. (b) Photocurrent stability and time evolution of the IOS photoanode at o V versus RHE under AM 1.5 illumination.

Figure S9. Characterizations of the treated CdS IOS after stability test. (a) XRD pattern, (b) high-resolution SEM image.

Figure R10. The absorbance spectra of treated CdS IOS and CdS film. The Y-axis is the absorbance intensity.

Figure S11. Structural models for FDTD simulation. (a) thin film, (b) IOS.

Figure S12. Simulated electromagnetic field distributions of (a) thin film, (b) IOS under the TE-polarized illumination at 500 nm from the FTO side.

Figure S13. Characterizations of the CdS/CdSe IOS. (a) top-view SEM image, (b) TEM image and corresponding SAED pattern (insert). Scale bar represents 200 nm, (c) XRD pattern, (d) EDS pattern.

Figure S14. (a) and (b) are absorption and IPEC spectra of CdS/CdSe IOS. The IPCE test was conducted under 1 sun AM 1.5 illumination, at o V vs Ag/AgCl reference electrode.

Figure S15. The photocurrent stability of CdS/CdSe IOS.