Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Hybrids of Mo₂C nanoparticles anchored on graphene sheets as anode materials

for high performance lithium-ion batteries

Beibei Wang^a, Gang Wang^b, Hui Wang^{a*}

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an 710069, PR China

^bNational Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, PR China

*Corresponding author:

Tel.: +86 29 8836 3115

Fax: +86 29 8830 3798

E-mail address: huiwang@nwu.edu.cn (H. Wang)

Figure S1 XRD pattern of bulk Mo₂C.

Figure S2 SEM image of bulk Mo₂C.

Figure S3 (a) A low magnification SEM image of $Mo_2C(52.6\%)/GR$ hybrid. (b) A typical EDS spectrum of $Mo_2C(52.6\%)/GR$ hybrid. (c-d) C and Mo elemental mappings.

Figure S4 Nitrogen adsorption/desorption isotherm of pure GR and bulk Mo₂C.

Figure S5 Voltage profiles of (a) $Mo_2C(38.7\%)/GR$ and (b) $Mo_2C(62.4\%)/GR$ electrodes. CV curves of (c) $Mo_2C(38.7\%)/GR$ and (d) $Mo_2C(62.4\%)/GR$ electrodes at a scan rate of 0.1 mV s⁻¹ in the range of 0-3 V.

Figure S6 SEM image of $Mo_2C(52.6\%)/GR$ hybrid after 100 discharge/charge cycles at the current density of 100 mA g⁻¹.