Supplementary Data

Facile and scalable fabrication of three-dimensional Cu(OH)₂ nanoporous

nanorods for solid-state supercapacitors⁺

Jizhang Chen,^a Junling Xu,^a Shuang Zhou,^a Ni Zhao*^a and Ching-Ping Wong*^{a,b}

^{a.} Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong. E-mail: nzhao@ee.cuhk.edu.hk (N. Zhao), cpwong@cuhk.edu.hk (C. Wong).

^{b.} School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

E-mail addresses: nzhao@ee.cuhk.edu.hk (N. Zhao), cpwong@cuhk.edu.hk (C. Wong).

Calculation methods

1. Three-electrode configuration

The areal capacitance C_a (F cm⁻²) and gravimetric capacitance C_g (F g⁻¹) of the Cu(OH)₂ could be calculated from the corresponding cyclic voltammetry curve by the following equations:

$$C_{a} = \frac{\int I(V)dV}{2\nu S\Delta V}$$
(1)
$$C_{g} = \frac{\int I(V)dV}{2\nu m\Delta V}$$
(2)

where I(V) (A) is the response current, V(V) is the potential vs. SCE, $v(V \text{ s}^{-1})$ is the scan rate, $S(\text{cm}^2)$ is the effective area of the electrode, m(g) is the mass of the active material on the electrode, $\Delta V(V)$ is the working potential.

 C_a (F cm⁻²) and C_g (F g⁻¹) could also be calculated from the corresponding galvanostatic discharging curve using the following equations:

$$C_{a} = \frac{I\Delta t}{S\Delta V}$$
(3)
$$C_{g} = \frac{I\Delta t}{m\Delta V}$$
(4)

where I(A) is the discharging current, Δt (s) is the discharging time, $S(cm^2)$ is the effective area of the electrode, m (g) is the mass of the active material on the electrode, ΔV (V) is the working

potential.

The equivalent series resistance (R_{ESR}) (Ω) could be calculated by:

$$R_{ESR} = \frac{V_{drop}}{2I} \tag{5}$$

where V_{drop} (V) is the abrupt voltage drop at the beginning of the discharging curve, I (A) is the corresponding current.

2. Two-electrode system (asymmetric supercapacitor, denoted as ASC)

The specific capacitance C_{ASC} (F g⁻¹) of the ASC could be calculated from the corresponding galvanostatic discharging curve according to the following equation:

$$C_{ASC} = \frac{I\Delta t}{M\Delta V} \tag{6}$$

where I(A) is the discharging current, Δt (s) is the discharging time, $\Delta V(V)$ is the potential window during the discharging process, M(g) is the total mass of active materials in the ASC.

The energy density E (mWh cm⁻³) and average power density P (mW cm⁻³) could be calculated as:

$$E = \frac{\int V(t)dtI}{3.6Vol}$$
(7)
$$P = \frac{3600 E}{t}$$
(8)

where V(t) (V) is the potential of the ASC, t (s) is the corresponding discharging time, I (A) is the discharging current, Vol (cm³) is the volume of the ASC including the volumes of two Cu foil current collectors and the gel electrolyte.

Supplementary Figures

Fig. S1 Survey XPS spectrum of 3-D Cu(OH)₂.

Fig. S2 (a,b) Low-magnification SEM images of 3-D Cu(OH)₂.

Fig. S3 Magnified TEM image of 3-D Cu(OH)₂ from Fig. 3d.

Fig. S4 Mass loading of $Cu(OH)_2$ on the 2×3 cm² $Cu(OH)_2/Cu$ slice (2×2 cm² covered by $Cu(OH)_2$) with respect to different anodization time.

Fig. S5 SEM images of 3-D Cu(OH)₂ with respect to the different anodization time: (a, b) 100 s; (c, d) 1800 s; (e, f) 3600 s.

Fig. S6 CV curves of the neat Cu slice with a potential cutoff of 0.6 V at 50 mV s⁻¹ and the Cu(OH)₂/Cu slice with potential cutoffs from 0.6 to 1.2 V at 50 mV s⁻¹.

Fig. S7 (a,b) SEM images of 3-D Cu(OH)₂ after 5000 cycles.

Fig. S8 Graphic illustrations of the $Cu(OH)_2//AC$ solid-state ASC under (a) normal state, (b) bended by one fold and (c) bended by three folds.

Fig. S9 Cycling performance of Cu(OH)₂//AC solid-state ASC at 10 A g⁻¹.

Fig. S10 Photographs of 1×4 cm² (left) and 4×6 cm² (right) Cu(OH)₂//AC solid-state ASCs.

Video S1 Demonstration of our tandem device (consisting of two 4×6 cm² solid-state ASCs) powering 26 LEDs.