Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Three-dimensional Mn-doped Zn_2GeO_4 nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance

Qun Li^{a,b} Xianguang Miao, Chengxiang Wang, and Longwei Yin^a,

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
^bCollege of Chemistry and Chemical Engineering, Taishan University, Tai'an 271021, P. R. China

Email: <u>yinlw@sdu.edu.cn</u>

Fig. S1. SEM images of the 7%Mn-Zn₂GeO₄ sample at different action time, (a) 12h, (b) 24h, and (c) 48h.

Fig. S2. SEM images of (a), (b) 1%Mn-Zn₂GeO₄and (c), (d) 9%Mn-Zn₂GeO₄ sample.

Fig. S3. Cross-section SEM image of 7%Mn-Zn₂GeO₄ sample.

Fig. S4. Coulomb efficiency of the synthesized samples within the 100 discharge/charge cycles.

Fig. S5. Relationship between Zre and $\omega^{-1/2}$ in the low-frequency region

Fig. S6. Cycling and rate performance of the pristine Zn₂GeO₄ nanowire sample not on the Ni foam.

Fig. S7. SEM images of Zn₂GeO₄ sample grown on Ni foam after 10 cycles at the current density of 100 mA g⁻¹.

Fig. S8. SEM images of the Mn doped Zn_2GeO_4 nansheet sample at lithiated state (a), (b) and delithiated state (c), (d) after 100 cycles at the current density of 100 mA g⁻¹. The thickness of nanosheet at these two states was all larger than that of state before cycling because of the pulverization effect. The electrodes can still maintain its network as well as porous structures after charging, suggesting that the nanosheet structure has a high stability.