Supplementary Information

Large-scale fabrication of micro-sized bulk porous silicon as a high performance anode for lithium-ion batteries

Wei He^a, Huajun Tian^a*, Fengxia Xin^a and Weiqiang Han^{a,b}*

^aNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China ^bSchool of Physical Science and Technology, Shanghai Tech University, Shanghai200031, P. R.China

*Corresponding Author:

E-mail address: tianhuajun@nimte.ac.cn; hanweiqiang@nimte.ac.cn

Figure S1. Schematic diagram of the synthesis and morphology of micro-sized porous Si as anode in LIBs.

Figure S2. (a) and (b) are the TEM images of the porous Si material after 100 fully charge/discharge cycles at a current density of 500 mA g^{-1} . (c) the high-resolution TEM images, and (d) the selected area electron diffraction (SAED) of the porous Si materials after 100 cycles.

	000					1
Si anodes	Si source	Particle size	Initial Coulombic efficiency	Capacity retention	Rate performance	Ref.
Micro-sized porous silicon	Fe-Si alloy	0.5-5 μm	88.1%	1250 mAh g ⁻¹ after 100 cycles at 500 mA g ⁻¹	558 mAh g ⁻¹ at 5 A g ⁻¹	this work
Nanocrystalline silicon	SiCl ₄	several tens to about 100 nm	84.7%	1180 mAh g ⁻¹ after 500 cycles at 3 A g ⁻¹	N/A	1
Mesoporous SiNW	metallurgical -Si	Nano size	52.9%	remains almost 2111 mAh g ⁻¹ over 50 cycles at 0.2C	400 mAh g ⁻¹ at 4C	2
Si nanorods	Al-Si ingot	200 nm in thickness	90%	600 mAh g ⁻¹ at 300 mA g ⁻¹ over 200 cycles	N/A	3
Nano-silicon	SiCl ₄ and RSiCl ₃ (R=H, C8H17)	5 nm	90%	71% capacity retention over 40 cycles	N/A	4
Nanoporous silicon	Mg ₂ Si	15 nm	88%	64% capacity retention over 85 cycles at 360 mA g ⁻¹	1000 mAh g ⁻¹ at 36 A g ⁻¹	5
Nest-like silicon nanospheres	NaSi	90-110 nm	N/A	35.9% capacity retention over 50 cycles at 2000 mA g ⁻¹	N/A	6
Nano-silicon	silica sol	80 nm	74%	89% capacity retention over 40 cycles at 0.36 A g ⁻¹	350 mAh g ⁻¹ at 18 A g ⁻¹	7
Silicon nanosheets	sand	~5 nm	~70%	NA	N/A	8
Porous silicon	metallurgical Si	19 nm	N/A	retained 1400 mAh g ⁻¹ at a current rate of 0.2C for 160 cycles.	N/A	9

 Table S1. Comparison of electrochemical performance of porous Si anodes without coating carbon in this work and in literature

Nano-Si	silica	less than	64.5%	650 mAh g ⁻¹	N/A	10
				at 0.045		
				mA/cm^2		
Hollow silicon	SiH4	wall	75%	73% capacity	1300 mAh g ⁻¹ at	11
nanotube	~	thickness		retention over	4 A g ⁻¹	11
		60 to 80		400 cycles at 2A		
		nm		g ⁻¹		
Amorphous	Silicon	wall	82%	1730 mAh g ⁻¹	1480 mAh g ⁻¹ at	12
silicon	sputtering	thickness		after 200 cycles	8.4 A g ⁻¹	12
	target	was		at 0.42 A g ⁻¹		
		~200 nm				
Micrometer-sized	SiO	microme	N/A	45% capacity	N/A	13
porous silicon		ter-sized		retention after		
				1000 cycles		
Silicon nanowire	C ₆ H ₈ Si	diameter	60%	54% capacity	N/A	14
		from 10		retention after		11
		to 50 nm		20 cycles		
				relative to the		
				first charging		
				cycle at C/20		
Nanoscale hollow	silica	120 nm	84%	over 93%	over 2000 mAh	15
porous silicon				capacity	g ⁻¹ at 4000 mA	
				retention after	g ⁻¹	
				99 cycles at 500		
				mA g ⁻¹		

(1) Lin, N.; Han, Y.; Wang, L.; Zhou, J.; Zhou, J.; Zhu, Y.; Qian, Y. *Angewandte Chemie* **2015**, *54*, 3822.

(2) Li, X.; Yan, C.; Wang, J.; Graff, A.; Schweizer, S. L.; Sprafke, A.; Schmidt, O. G.; Wehrspohn, R. B. *Advanced Energy Materials* **2015**, *5*, n/a.

(3) Wang, J.; Meng, X.; Fan, X.; Zhang, W.; Zhang, H.; Wang, C. ACS Nano 2015.

(4) Kim, H.; Seo, M.; Park, M. H.; Cho, J. Angewandte Chemie 2010, 49, 2146.

(5) Liang, J. W.; Li, X. N.; Hou, Z. G.; Guo, C.; Zhu, Y. C.; Qian, Y. T. *Chemical communications* **2015**, *51*, 7230.

(6) Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Advanced materials **2007**, *19*, 4067.

(7) Liang, J.; Li, X.; Zhu, Y.; Guo, C.; Qian, Y. Nano Research 2014, 8, 1497.

(8) Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Nanoscale **2014**, *6*, 4297.

(9) Ge, M.; Lu, Y.; Ercius, P.; Rong, J.; Fang, X.; Mecklenburg, M.; Zhou, C. Nano letters 2014, 14,

261.

(10) Liu, X.; Gao, Y.; Jin, R.; Luo, H.; Peng, P.; Liu, Y. Nano Energy **2014**, *4*, 31.

(11) Epur, R.; Hanumantha, P. J.; Datta, M. K.; Hong, D.; Gattu, B.; Kumta, P. N. Journal of Materials Chemistry A **2015**, *3*, 11117.

(12) Zhao, Y.; Peng, L.; Ding, Y.; Yu, G. Chemical communications 2014, 50, 12959.

(13) Lu, Z.; Liu, N.; Lee, H.-W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y. ACS Nano **2015**, *9*, 2540.

(14) Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. *Journal of the American Chemical Society* **2011**, *133*, 20914.

(15) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Angew. Chem.-Int. Edit. 2012, 51, 2409.