Supporting information

InP and Sn:InP based quantum dot sensitized solar cells

Calculation procedure for ligand exchange efficiency:

The ratio of the concentration before (C_1) and after (C_2) ligand exchange is defined as the exchange efficiency $(Y_{exchange})$.

$$Y_{exchange} = \frac{C_2}{C_1} \times 100\% = \frac{A_2/\varepsilon_2 l_2}{A_1/\varepsilon_1 l_1} \times 100\%$$
(1)

Here, A represents the absorbance at the first excitonic absorption peak. l represents the constants. ε is the correlation molar extinction coefficient that is calculated using the empirical functions (2).

$$= 3046.1D^{3} - 76532D^{2} + (5.5137 \times 10^{5})D - 8.9839 \times 10^{5}$$
⁽²⁾

Here, the correlation diameter (D) is calculated using equation (3). $D = -3.3307 \times 10^{-12} \lambda^5 + 1.0262 \times 10^{-8} \lambda^4 - 1.0781 \times 10^{-5} \lambda^3 + 5.4550 \times 10^{-3} \lambda^2 - 1.3122\lambda + 119.9$ (3)

Where, λ represents the first excitonic absorption peak wavelength.

З

Figure S1. The temporal evolution of UV-vis absorption spectra of a) InP QDs and b) Sn:InP QDs with Sn/In=0.1

Figure S2. HR-TEM images of a) undoped InP and b) Sn:InP QDs

Figure S3 The absorption spectra of undoped InP QDs and Sn doped InP QDs with different Sn/In ratios of 0.05, 0.1 and 0.15

Figure S4. Band and DOS curves of undoped InP and Sn:InP semiconductor materials

Figure S5. UV-vis spectra of QDs sensitized TiO₂ films

Table STICT-AES analysis results of Shiffir QDs with different Shiffi ratios							
_	Samples	Sn/In ratios –ICP- AES	Initial configuration ratios				
_	Sn:InP	0.081	0.15				
	Sn:InP	0.055	0.10				
	Sn:InP	0.010	0.05				

Table S1 ICP-AES analysis results of Sn:InP QDs with different Sn/In ratios

Table S2 EDS	5 analysis results	s of Sn:InP QE)s (Sn/In=0.1) sensitized TiC) ₂ films
		· · ·		/	-

Element	Weight %	Atomic %
ΡΚα	3.04	5.01
In La	12.29	5.46
Sn Lα	0.87	0.38
Τί Κα	83.79	89.16

Figure S6. EDS spectrum of the Sn:InP QDs sensitized photoanode

Figure S7. Efficiency of a) different transparent layer thickness of TiO₂ films and b) Sn/In atom ratios

Figure S8. The stability of Sn:InP QDSSCs: a) current density and b) efficiency versus illumination time under continuous illumination.

Figure S9. Nyquist curves of Sn:InP QDSSCs with different absorption wavelength.