Supporting Information

Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries

Zongmin Zheng,^a Xin Zhang,^b Fei Pei,^a Yan Dai, Xiaoliang Fang, ^{* a} Taihong Wang^a and Nanfeng Zheng ^{* b}

a. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen Fujian 361005, China. E-mail: x.l.fang@xmu.edu.cn

b. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, Fujian 361005, China. E-mail: nfzheng@xmu.edu.cn

Fig. S1 SEM image and XRD pattern of the MgO microrods.

Fig. S2 EDX spectrum of HPCM-900.

Fig. S3 SEM images of HPCM-800.

Fig. S4 SEM images of HPCM-700.

Fig. S5 SEM images (a, b), N_2 sorption isotherm (c) and pore size distribution (d) of HPCM-1000.

Fig. S6 (a) Schematic illustration for the synthesis of HCS, (b) SEM image of HCS-900, N_2 sorption isotherms (c) and pore size distributions (d) of HCS obtained at the different temperatures.

Fig. S7 The rate performances: (a) HPCM-700, (b) HPCM-800, (c) HPCM-1000, (d) PUCN-900, (the inset: SEM image of PUCN-900).

Fig. S8 Nyquist plots of the HPCM-900 and PUCN-900 electrodes after 50 cycles.

Carbon anode	charge/discharge rate	capacity	References
		(mAh/g)	
HPCM-900	5A/g	312	This work
	10A/g	246	
MgO-templated graphene nanocages	10A/g	48	Ref. S1
PECVD growth of VAGNs	1.5A/g (4C)	297	Ref. S2
MgO-templated PUCNs	7.44 A/g(20C)	240	Ref. S3
Holey graphene papers	10A/g	~75	Ref. S4
N-doped graphene	5A/g	296	
	10A/g	~250	Ref. S5
Hollow mesoporous graphene Spheres	7.44A/g	~200	Ref. S6
mesoporous graphene nanosheets	5A/g	255	Ref. S7
Slat-templated VAGNs	5A/g	265	Ref. S8
Ordered mesoporous graphene	5A/g	127	Def CO
frameworks	10A/g	87	Ket. 59

Table S1. Graphene and graphene-like carbon anodes evaluated at high rate

References

[S1] K. X. Wang, Z. L. Li, Y. G. Wang, H. M. Liu, J. S. Chen, J. Holmes and H. S. Zhou, *J. Mater. Chem.* 2010, **20**, 9748.

[S2] H. Kim, Z. Wen, K. Yu, O. Mao and J. Chen, J Mater. Chem. 2012, 22, 15514.

[S3] Z. Fan, J. Yan, G. Ning, T. Wei, L. Zhi and F. Wei, *Carbon* 2013, **60**, 558.

[S4] X. Zhao, C. M. Hayner, M. C. Kung and H. H. Kung, ACS Nano 2011, 5, 8739.

[S5] Z. S. Wu, W. C. Ren, L. Xu, F. Li and H. M. Cheng, ACS Nano 2011, 5, 5463.

[S6] S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier and K. Mullen, Adv. Mater. 2010, 22, 838.

[S7] Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng and D. Zhao, *J. Am. Chem. Soc.* 2013, **135**, 1524.
[S8] J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti and T. P. Fellinger, *J. Am. Chem. Soc.* 2015, **137**, 5480.

[S9] Y. Jiao, D. Han, L. Liu, L. Ji, G. Guo, J. Hu, D. Yang and A. Dong, *Angew. Chem. Int. Ed.* DOI: 10.1002/anie.201501398.