Electronic Supplementary Information

Isoindigo-Based Low Bandgap Conjugated Polymer for o-Xylene Processed Efficient Polymer

Solar Cells with Thick Active Layers

Xin Dong,^{ab} Yunfeng Deng,^a Hongkun Tian,^{*a} Zhiyuan Xie,^a Yanhou Geng,^{*a} Fosong Wang ^a ^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, 130022, P. R. China. ^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China Corresponding author: <u>yhgeng@ciac.ac.cn</u>; <u>hktian@ciac.ac.cn</u>

Fig. S1 Photos of the solutions of P(1FIID-BT) and P(IID-BT) (5 mg/mL) in *o*-xylene prepared at 80 °C after stored at room temperature for 3 hours.. TGA and DSC curves of P(1FIID-BT) and P(IID-BT).

Table S1. Molecular Weight and Solubility of P(1FIID-BT) and P(IID-BT).

Fig. S2 Solution and film absorption spectra and film cyclic voltammograms of P(1FIID-BT) and P(IID-BT).

Table S2. Optical and Electrochemical Properties of Polymer

Fig. S3 Output and transfer characteristics of OFETs based on pristine films of P(1FIID-BT).

 Table S3. OFET Devices Performance of P(1FIID-BT).

Fig. S4 Out-of-plane and in-plane XRD patterns of P(1FIID-BT) films before and after thermal annealing at 150 °C for 20 min.

Fig. S5 AFM height and phase images of P(1FIID-BT) film before and after annealing at 150 °C.

Fig. S6. *J*-V and EQE curves of PSC devices ($P(1FIID-BT)/PC_{61}BM = 1:1.5$ (w/w)) with a different amount of ODT as additives.

Table S4. Device Performance of Conventional PSCs Based on P(1FIID-BT)/PC₆₁BM (1:1.5) with Different Amount of Additives.

Fig. S7. J-V and EQE curves of inverted PSC devices with 2% ODT as additives.

Table S5. Device Performance of Inverted PSCs Based on P(1FIID-BT)/PC₆₁BM with Different Weight Ratio.

Fig. S8 *J*-V characteristics of hole-only and electron-only devices of $P(1FIID-BT)/PC_{61}BM$ (1:1.8, w/w).

Instruments: ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 MHz spectrophotometer with chloroform-d (CDCl₃) as solvent and tetramethylsilane (TMS) as an internal standard. Hightemperature gel permeation chromatography (GPC) was performed by using 1,2,4-trichlorobenzene as eluent and polystyrene as standard at 150 °C on a PL-GPC 220 system. UV-Vis absorption spectra were measured on a Shimadzu UV3600 UV-vis-NIR spectrometer. Cyclic voltammetry (CV) measurements were carried out on a CHI660a electrochemical workstation using saturated calomel electrode (SEC) as reference electrode, platinum wire as counter electrode and glassy carbon electrode (diameter of 1 cm) as working electrode. TGA was carried out at a heating rate of 10 °C/min under nitrogen flow on a PerkinElmer TGA7. DSC was performed on a PerkinElmer DSC 7 with a heating/cooling rate of ± 10 °C/min under nitrogen flow. Atomic force microscopy (AFM) measurements were carried out in tapping mode on a SPA400HV instrument with a SPI 3800 controller (Seiko Instruments). Transmission electron microscopy (TEM) images were recorded on a JEM-1011 transmission electron microscope with accelerating voltage of 100 KV and camera length of 160 cm. Thin film XRD were tested on Bruker D8 Discover X- ray diffractometer (outplane) and Rigaku SmartLab X- ray diffractometer (in-plane) with an incidence angle of 0.2°, Cu K α as X-ray sourse ($\lambda = 0.154$ nm), tube voltage of 40 KV and electric current of 200 mA. Two dimensional grazing incidence X-ray diffraction (GIXD) was measured at Shanghai Synchrotron Radiation Facility (SSRF) on beam line BL14B1 ($\lambda = 0.124$ nm) with a MarCCD area detector at incidence angle of 0.16°.

Fig. S1 (a): Photos of the solutions of P(1FIID-BT) and P(IID-BT) (5 mg/mL) in *o*-xylene prepared at 80 °C after stored at room temperature for 3 hours. P(1FIID-BT) solution was stable while P(IID-BT) began to precipitate. TGA (b) and DSC (c) curves of P(1FIID-BT) and P(IID-BT).

 eului ii eigne un	a soluoin	\mathcal{G} of \mathcal{G}				
polymer	<i>M</i> ₁ [kDa]	<i>M</i> w [kDa]	Ð	o-DCBª	o-xylene ^a	
P(IID-BT)	25	82	3.24	S	Р	
P(1FIID-BT)	65	219	3.36	S	S	

Table S1. Molecular Weight and Solubility of P(1FIID-BT) and P(IID-BT).

^{a)} The concentrations of P(1FIID-BT) and P(IID-BT) were 12 mg/mL in *o*-DCB and 5 mg/mL in *o*-xylene. P: precipitation; S: solution.

Fig. S2 Solution (a) $(1.0 \times 10^{-5} \text{ mol/mL in } o\text{-xylene for P(1FIID-BT)})$ and o-DCB for P(IID-BT)) and film (b) absorption spectra and film cyclic voltammograms (c) of P(1FIID-BT) and P(IID-BT).

Table S2. Optical and Electrochemical Properties of Polymers

polymer	UV-vis ^λ _{max} [nm]		E ^{opt} [eV]	Cyclic voltammetry			
	Solution	Film		E _{onset} a [eV]	E ^{re} onset ^a [eV]	HOMO [eV]	LUMO [eV]
P(IID-BT)	420/639/701	420/638/701	1.65	0.64	-1.28	-5.44	-3.52
P(1FIID-BT)	412/658/722	410/650/716	1.61	0.66	-1.23	-5.46	-3.57

^{a)} The oxidation and reduction onset potentials of the polymers are versus Fc/Fc⁺.

Figure S3. Output (a) and transfer (b) characteristics of OFETs based on pristine films of P(1FIID-BT).

Table S3. OFET Devices Performance of P(1FIID-B	T)).
---	----	----

T _{postanneal} [°C]	μ _h [cm²v⁻¹s⁻¹]	V _ [V]	Log(I /I) on off
pristine	0.33	-29.8	4-5
150	0.42	-15.5	5-6
200	0.40	-6.4	5-6

Fig. S4 Out-of-plane (a) and in-plane (b) XRD patterns of P(1FIID-BT) films before and after thermal annealing (150 °C for 20 min).

Fig. S5 AFM height (a, b) and phase images (c, d) of P(1FIID-BT) film before (a, c) and after annealing at 150 °C (b, d).

Fig. S6 J-V (a) and EQE (b) curves of PSC devices ($P(1FIID-BT)/PC_{61}BM = 1:1.5$ (w/w)) with a different amount of ODT as additives.

ODT [%]	V _{oc} [V]	J _{sc} ª [mA cm ⁻²]	FF	PCE⁵ [%]
0	0.86	6.63(6.36)	0.56	3.19(3.16)
1	0.88	9.30(9.61)	0.53	4.33(4.31)
2	0.89	12.41(11.82)	0.57	6.29(6.00)
3	0.89	11.41(11.35)	0.52	5.28(5.15)

Table S4. Device Performance of Conventional PSCs Based on P(1FIID-BT)/PC₆₁BM (1:1.5) with Different Amount of Additives.

^{a)} The values in parentheses are calculated from EQE. ^{b)} The values in parentheses are the average of 4 devices.

Fig. S7 J-V (a) and EQE (b) curves of inverted PSC devices with 2% ODT as additives.

 Table S5. Device Performance of Inverted PSCs Based on P(1FIID-BT)/PC₆₁BM with Different Weight Ratio.^a

P(1FIID-BT):	ODT	V _{oc}	J _{SC} ^b	FF	
г С ₆₁ ЫМ	[70]	[v]			[70]
1:1.2		0.89	11.61(11.36)	0.62	6.40(6.27)
1:1.5	2	0.88	12.28(12.09)	0.64	6.92(6.81)
1:1.8	2	0.88	12.36(12.08)	0.65	7.07(6.91)
1:2		0.87	12.55(12.46)	0.63	6.87(6.83)

^{a)} 2 V% DOT was used as additives. ^{b)} The values in parentheses were calculated from EQE. ^{c)} The values in parentheses are the average of 4 devices.

Fig. S8 *J*-V characteristics of hole-only (a) and electron-only (b) devices of P(1FIID-BT)/PC₆₁BM (1:1.8, w/w). Lines represent the fitting results using a model of single-carrier space-charge-limited current with field-dependent mobility. Film thickness was ca. 300 nm.