Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

## Li-ion conductivity in $Li_9S_3N$ -Supplementary Information

Lincoln Miara<sup>1</sup>, Naoki Suzuki<sup>2</sup>, William Davidson Richards<sup>3</sup>, Yan E. Wang<sup>3</sup>, Jae Chul Kim<sup>3</sup>, Gerbrand Ceder<sup>3</sup>

<sup>1</sup>Samsung Advanced Institute of Technology – USA, 255 Main St., Suite 702, Cambridge, MA 02142

<sup>2</sup>Samsung Research Japan— Mino Semba Center Bldg. 13F, 2-1-11, Semba Nish Minoh, Osaka 562-0036,

Japan

<sup>3</sup>Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77

Massachusetts Ave, Cambridge, MA 02139





Figure S1: Initial and final images of the NEB pathways explored. (Top) LSN, the 3-Li coordinated hop mechanism is shown where the coordinated 3 hop mechanism requires 3 Li to pass through the triangular sulfur bottleneck. (Bottom) Li8.5Ca0.25S3N, the initial image shows the Li displaced from the tetrahedral site near a Ca dopant along the migration pathway. Thus, only 2 Li are required to pass through the bottleneck and the migration barrier is decreased.



Figure S2: 2 Li atom migration pathway from 6S-coordinated octahedral site to 4S-2N-coordinated octahedral site via tetrahedral site. The migration energy is calculated to be about 0.8 eV.