Electronic Supplementary Information for

Oxygen Reduction Electrocatalyst Based on Spatially Confined Cobalt Monoxide Nanocrystals on Holey N-Doped Carbon Nanowire : the Enlarged Interfacial Area for Performance Improvement

Jiaoxing Xu,^{a,b} Qiangmin Yu,^{a,b} Chuxin Wu,^{a,b} Lunhui Guan^{a,b *}

 ^a Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. Tel./Fax: 86-591-63173550. E-mail: guanlh@fjirsm.ac.cn.
^b Fujian provincial key laboratory of nanomaterials, Fuzhou, Fujian 350002, China

1. Additional experimental data

Fig. S1. SEM image of (a) CoO/NCW and (b) CoO/NCT sample.

Fig. S2. TG analysis of (a) the CoO/NCW and CoO/NCT hybrids and (b) CoO/NCW samples with different CoO contents.

Fig. S3. (a) XRD patterns of the CoO/NCW and CoO/NCT hybrids and (b) The enlarged show of the diffraction peaks of (111) and (200), the crystalline diameter (*D*) calculated by Scherrer formula from the most intense diffraction peak (200) was 6-7 nm.

Fig. S4. (a) XP survey spectra of the CoO/NCW and CoO/NCT hybrids and (b) High-resolution Co 2p spectra of CoO/NCW-1 and CoO/NCW-2.

Fig. S5. High-resolution XP O 1s spectra of CoO/NCW and CoO/NCT.

Fig. S6 (a) LSV Curves of the CoO NPs, NCT, NCW, CoO/NCT and CoO/NCW nanocomposite and (b) the corresponding given electrocatalytic acivity in term of half-wave potential ($E_{1/2}$) and kinetic-limiting current density.

Fig.7 The accelerated durability by CV-cycling the catalyst of CoO/NCW (a) and CoO/NCT (b) between 0.6 and 1.0 V at 100 mVs⁻¹ under O_2 -atmosphere.

Table S1. ICP analysis of the residual of Fe/Co metals in NCW sample.

Sample	Fe / wt.%	Co / wt.%	Al / wt.%
NCW	0.38	0.33	0.12

Catalysts	SA ^{a)}	PV ^{b)}	PSD ^{c)}	At% ^{d)}		
	[m ² · g ⁻¹]	[cm ³ · g ⁻¹]	[nm]	Ν	С	0
N-CT	109	0.91	65	9.2	84	6.4
N-CW	176	0.48	1.4/22	7.2	86	6.2

Table S2. Physicochemical properties and the electrocatalytic activity of the N-CT and N-CW sample for ORR.

^{a)} Specific surface area from multiple BET method; ^{b)} Total pore volume at P/P₀ = 0.99; ^{c)} Pore size distribution, estimated using the nonlocal density functional theory for N-CWs (assuming slit pore geometry) and the Barrett–Joyner–Halenda formula for N-CT (cylindrical pore geometry); ^{d)} Atomic ratio data from XPS analyses.

Table S3. The interfacial area characterized by the amounts of the electrochemically-avaiable Co(II)/ Co(III) redox centers and the electrocatalytic activity of the CoO/KB, CoO/NCT and CoO/NCW samples for ORR in comparison with the commercial Pt/C catalyst.

Catalyst	The charge of the oxidizing peak @1.1 V [C]	E _{onset} / E _{1/2} [mV/mV]	J _ĸ ^{@ 0.7V} [mA∙cm ⁻²]	n ^(RRDE)
СоО/КВ	1.46 x 10 ⁻³	0.875/0.75	5.6	3.3
CoO/NCT	1.04x 10 ⁻³	0.875/0.76	9.7	3.67
CoO/NCW	2.46x10 ⁻³	0.895/0.78	30.3	3.83
Pt/C		0.950/0.80	23.1	4.0

2. Koutechy-Levich equations and the transfer electron number calcualtions

The transfer electron number per oxygen molecule involved in the oxygen reduction at N-CW and N-CT electrodes was determined on the basis of the Koutechy-Levich equation^{2,3} given below:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
(1)
$$B = 0.62nFC_0 (D_0)^{\frac{2}{3}} v^{-\frac{1}{6}}$$
(2)
$$J_K = nF\kappa C_0$$
(3)

where J_K is the kinetics current density, J is the measured current density of the ORR, n represents the number of electrons transferred per oxygen molecule, F is the Faraday constant

(F= 96485 C·mol⁻¹), C_0 is the bulk concentration of O_2 (= 1.2×10^{-3} mol· L⁻¹), D_0 is the diffusion coefficient of O_2 in the NaOH electrolyte (= $1.9*10^{-5}$ cm² S⁻¹), v is the kinetic viscosity of the electrolyte (= 0.01 cm² S⁻¹), κ is the electron-transfer rate constant and ω is the angular velocity of the the disk ($\omega = 2\pi N$, N is the linear rotation speed). According to Eqs. (1) and (2), the number of electrons transferred (*n*) and J_K can be obtained from the slope and intercept of the K-L plots, respectively.

Reference

- H. Chen, Y. Yang, Z. Hu, K. F. Huo, Y. W. Ma, Y. Chen, X. S. Wang and Y. N. Lu, *J Phys Chem B*, 2006, 110, 16422-16427.
- 2. W. Chen, S. W. Chen, Angew Chem Int Ed, 2009, 48, 4386-4389.
- 3. J. X. Xu, G. F. Dong, C. H. Jin, M. H. Huang, L. H. Guan, ChemSusChem, 2013, 6, 493-499.