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1. 'H NMR spectra of protic salt 3

Protic salt 3 was identified by ‘H NMR spectroscopy of the CDCl; (Fig. S3) and
DMSO-dg solution (Fig. S4). The imidazole NH proton and sulfonic acid proton are not
observed for the CDCl3 solution (Fig. S3). In contrast, the DMSO-ds solution indicates a
broad signal at 14.3 ppm, which is attributable to the imidazolium NH proton.
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Figure S1. "H NMR spectrum of protic salt 3 in CDCls.
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Figure S2. *H NMR spectrum of protic salt 3 in DMSO-ds.
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2. XRD diffraction study of compound 1

The self-assembled structure of compound 1 was determined by XRD measurements. The
wide- angle XRD pattern of 1 at 70 °C shows four peaks corresponding to the diffraction from
the (100), (110), (200) and (300) planes of the hexagonal columnar structure. The
two-dimensional transmission image of small-angle XRD pattern of 1 aligned
homeotropically on a polyimide film at 70 °C shows diffraction spots with a six fold

symmetry from the (100) plane.
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Figure S3. (a) Wide-angle and (b) small-angle XRD patterns of compound 1 in the columnar phase at
70 °C.

3. The intercolumnar distance (a) and average number of molecules per
cross-sectional slice of the columns (n)

Figure S4. Schematic illustration of the hexagonal columnar lattice.
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The intercolumnar distance (a) of the single diol compound and the mixtures containing
protic salt 3 is estimated as follows. The value of djq is obtained from the wide-angle XRD
patterns.

_ 2 X leO

T

The volume of the cross-sectional slice of the column (V) is described as follows,

1 V3
V=A><B><E><12><h=7a2h

where h is the average spacing between benzene rings or molten alkyl chains in the direction
of the column axis. The h value is estimated to be 4.5-4.6 A from the halo around 20 ° in the
wide-angle XRD patterns.

The density (p) of the material is described as follows:

oY n3 n n3
_ NAMI + NAM3_ NAMl + NAM3 _ inlMl + Tl3M3
a v T B, V3 Nah
a

2

where n; and nz are the average number of molecules of compound 1 and protic salt 3 per
cross-sectional slice of the columns respectively, M; and M3 are the molecular weight of 1 and
3 (M1 =564.9 and M3 = 226.3). N, is Avogadro’s number (6.02 x 10% mol™).

Therefore, ny and nz can be obtained by solving the following simultaneous equations.

ny: ny3 = (100 —x) : x

V3 2
n1M1 + n3M3 = 7NAa hp

where x is the mole% of 3 in the mixtures. The density of the diol compounds and the
mixtures containing 3 is assumed to be 1.0 g cm™.
The intercolumnar distance (a) of the mixtures 1/3(x) and 2/3(x) up to x = 40 are
shown in Figure S5. The average number of diol molecules 1 (n;) and 2 (n,) and protic salt
(n3) in the mixtures per cross-sectional slice of the columns are shown in Figure S6 and S7.
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Figure S5. Intercolumnar distance of the mixtures in the Col, phase.
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Figure S6. Average number of diol compound 1 (N;: @) and protic salt 3 (N3: =) per
cross-sectional slice of the columns.
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4.'H NMR spectra of 1,3, and the mixture 1/3(50)

The interactions of diol compound 1 and protic salt 3 were examined by *H NMR. The
downfield shift of C(2) proton (H13) of imidazolium cation of 3 was observed.
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Figure S8. 'H NMR spectra of diol 1, protic salt 3, and the equimolar mixture of 1 and 3.



5. ¥C NMR spectra of 1, 2, 3, 1/3(50), and 2/3(50)

The interactions of diol compound and protic salt were examined by *C NMR. The
carbonyl carbons of 1 and 2 appear at 167.2 ppm 169.2 ppm, respectively. No shifts of the
carbonyl carbon are observed for the mixture s 1/3(50) and 2/3(50). These results suggest the
carbonyl groups are not involved in specific interactions with protic salt 3.
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Figure S9. 3¢ NMR spectra of single compound 1 and 3 and equimolar mixture 1/3.
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Figure S10. *C NMR spectra of single compound 2 and 3 and equimolar mixture 2/3.



6. IR spectra of single compounds 1-3 and the mixtures

The interactions of diol compounds 1, 2 and protic salt 3 were examined by FT-IR
measurements. The IR spectra of single compounds 1, 2, and 3 are shown in Figure S11-S13,
respectively. Figures S14-S17 indicate the IR spectra of the mixtures of 1, 2 with 3. The IR
spectra of the mixtures containing 3 at the different concentration were also recorded (Fig.
S18).
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Figure S11. (a) Temperature dependent FT-IR spectra of compound 1 and (b) its enlarged view.
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Figure S12. (a) Temperature dependent FT-IR spectra of compound 2 and (b) its enlarged view.
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Figure S13. FT-IR spectra of protic salt 3 at room temperature.
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For single compounds 1 and 2, the O-H stretching band around 3400 cm™ is shifted to higher
wavenumber as the temperature rises. The N-H and C=0 bands are also slightly shifted to
higher wavenumber.
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Figure S14. (a) Temperature dependent FT-IR spectra of the mixture 1/3(30) and (b) its enlarged
view.
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Figure S15. (a) Temperature dependent FT-IR spectra of the mixture 2/3(30) and (b) its enlarged
view.
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7. POM images of the uniaxially oriented 2/3(20) in the Col,, phase

A uniaxially parallel orientation of the columns of the mixture 2/3(20) has been achieved
between the comb-shaped gold electrodes on a glass substrate by the application of
mechanical shear force to the sample at 120 °C.

Figure S19. POM images of the uniaxially oriented mixture 2/3(20) under a crossed Nicols condition.
(a) The shearing direction is parallel to the polarizer axis. (b)The sample of (a) is rotated by 45 °.
Arrows indicate the directions of the shear force (S), analyzer (A) and polarizer (P) axes.
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8. Vogel-Tamman-Fulcher plots of the ionic conductivities for mixtures
1/3(x) and 2/3(x)

The temperature dependence of the ionic conductivities for the mixtures 1/3(x) and
2/3(x), where x denotes the mole% of 3, are fitted by the Vogel-Tamman-Fulcher (VTF)
equation:

o (7=7)
g = —ex
vT AT,

where ¢ and T are the ionic conductivity and the absolute temperature. A, B and Ty are fitting
parameters. The parameter A (S m™ K" is related to the carrier ion number. The parameter B
(K) is related to the activation energy. The product of B (K) and the molar gas constant (8.31 J
K™ mol™) has the dimension of activation energy (J mol™). Ty (K) is the ideal glass transition
temperature at which the configurational entropy vanishes.

The temperature dependencies of ionic conductivities for the mixtures 1/3(x) and 2/3(x)
are well fitted by the VTF equation. The VTF fitting parameters are summarized in Table S1.
For example, the VTF fitting of the ionic conductivities for the mixture 2/3(20) in the Coly,
phase is shown in Figure S20. The VTF plots of the ionic conductivities for the mixtures
1/3(x) and 2/3(x) shown in Figure S21 are depicted as straight lines.
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Figure S20. Arrhenius plots for the ionic conductivity of the mixture 2/3(20). The solid line is the
fitting result of the value of ionic conductivity on the VTF equation.
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Table S1. VTF fitting parameters of the ionic conductivities for mixtures 1/3(x) and 2/3(x).

A (S mtK?) B (K) To (K) R?
1/3(20) 0.032 625.9 238.8 0.9983
1/3(30) 0.121 751.3 229.7 0.9991
1/3(50) 13.10 2161.1 124.82 0.9972
2/3(20) 0.049 877.71 242.34 0.9984
2/3(30) 0.173 847.73 239.43 0.9996
2/3(50) 14.35 2480.1 128.02 0.9986
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Figure S21. VTF plots of the ionic conductivities for (a) the mixture 1/3(x) and (b) the mixture 2/3(x) in the
liquid-crystalline phases. The mixtures 1/3(20), 1/3(30), 2/3(20), and 2/3(30) form the Col,, phases. The

mixtures 1/3(50) and 2/3(50) exhibit the S, phases.
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9. DSC thermograms of 1, 2 and their mixtures with 3
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Figure S22. DSC thermograms of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d) mixture
1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at the scanning rate of 10 K/min.
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Figure S23. DSC thermograms of (a) compound 2, (b) mixture 2/3(10), (c) mixture 2/3(20), (d) mixture
2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at the scanning rate of 10 K/min.
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Figure S24. DSC thermograms of (a) the mixtures 1/3(x) and (b) the mixtures 2/3(x) on cooling at the
scanning rate of 10 K/min.
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Figure S25. DSC thermograms of protic salt 3 at the scanning rate of 10 K/min.
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10. Wide-angle XRD diffraction patterns of the mixtures
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Figure S26. Wide-angle XRD patterns of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d)
mixture 1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at 70 °C.
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Figure S27. Wide-angle XRD patterns of (a) compound 2, (b) mixture 2/3(10), (c) mixture 2/3(20), (d)
mixture 2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at 70 °C.
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Table S2. The values of d-spacing for the mixtures 1/3(x) at 70 °C.

(100) [A] (200) [A]
1 39.41 19.71
1/3(10) 45.04 21.02
1/3(20) 46.95 21.96
1/3(30) 47.97 22.87
1/3(40) 50.73 23.99
1/3(50) 49.04 22.75
Table S3. The values of d-spacing for the mixtures 2/3(x) at 70 °C.
(100) [A] (200) [A]

2 37.72 18.87
2/3(10) 44.14 20.63
2/3(20) 47.97 22.29
2/3(30) 50.73 23.36
2/3(40) 55.17 25.66
2/3(50) 49.04 22.87
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Figure S28. Wide-angle XRD pattern of protic salt 3 at 25 °C.
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