Supplementary information

Use of a protic salt for the formation of liquid-crystalline proton-conductive complexes with mesomorphic diols

Akihiro Yamashita^a, Masafumi Yoshio,*^a Bartolome Soberats,^{ab} Hiroyuki Ohno^c and Takashi Kato*^{ab}

^{*a*}Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

^bCREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.

^cDepartment of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan.

*Corresponding author. E-mail: kato@chiral.t.u-tokyo.ac.jp, yoshio@chembio.t.u-tokyo.ac.jp

Table of contents:

- **1.** ¹H NMR spectra of protic salt 3
- 2. XRD diffraction study of compound 1

3 The intercolumnar distance (a) and average number of molecules per cross-sectional slice of the columns (n)

4. ¹H NMR spectra of 1,3, and the mixture 1/3(50)

5. ¹³C NMR spectra of 1, 2, 3, 1/3(50), and 2/3(50)

6. IR spectra of single compounds 1-3 and the mixtures

7. POM images of the uniaxially oriented 2/3(20) in the Col_h phase

8. Vogel-Tamman-Fulcher plots of the ionic conductivities for mixtures 1/3(x) and 2/3(x)

9. DSC thermograms of 1, 2 and their mixtures with 3

10. Wide-angle XRD diffraction patterns of the mixtures

1. ¹H NMR spectra of protic salt 3

Protic salt **3** was identified by ¹H NMR spectroscopy of the CDCl₃ (Fig. S3) and DMSO-d₆ solution (Fig. S4). The imidazole NH proton and sulfonic acid proton are not observed for the CDCl₃ solution (Fig. S3). In contrast, the DMSO-d₆ solution indicates a broad signal at 14.3 ppm, which is attributable to the imidazolium NH proton.

Figure S1. ¹H NMR spectrum of protic salt **3** in CDCl₃.

Figure S2. ¹H NMR spectrum of protic salt 3 in DMSO-d₆.

2. XRD diffraction study of compound 1

The self-assembled structure of compound **1** was determined by XRD measurements. The wide- angle XRD pattern of **1** at 70 °C shows four peaks corresponding to the diffraction from the (100), (110), (200) and (300) planes of the hexagonal columnar structure. The two-dimensional transmission image of small-angle XRD pattern of **1** aligned homeotropically on a polyimide film at 70 °C shows diffraction spots with a six fold symmetry from the (100) plane.

Figure S3. (a) Wide-angle and (b) small-angle XRD patterns of compound 1 in the columnar phase at 70 °C.

3. The intercolumnar distance (a) and average number of molecules per cross-sectional slice of the columns (n)

Figure S4. Schematic illustration of the hexagonal columnar lattice.

The intercolumnar distance (*a*) of the single diol compound and the mixtures containing protic salt **3** is estimated as follows. The value of d_{100} is obtained from the wide-angle XRD patterns.

$$a = \frac{2 \times d_{100}}{\sqrt{3}}$$

The volume of the cross-sectional slice of the column (V) is described as follows,

$$V = A \times B \times \frac{1}{2} \times 12 \times h = \frac{\sqrt{3}}{2}a^2h$$

where *h* is the average spacing between benzene rings or molten alkyl chains in the direction of the column axis. The *h* value is estimated to be 4.5-4.6 Å from the halo around 20 $^{\circ}$ in the wide-angle XRD patterns.

The density (ρ) of the material is described as follows:

$$\rho = \frac{\frac{n_1}{N_A}M_1 + \frac{n_3}{N_A}M_3}{V} = \frac{\frac{n_1}{N_A}M_1 + \frac{n_3}{N_A}M_3}{\frac{\sqrt{3}}{2}a^2h} = \frac{2}{\sqrt{3}}\frac{n_1M_1 + n_3M_3}{N_Aa^2h}$$

where n_1 and n_3 are the average number of molecules of compound **1** and protic salt **3** per cross-sectional slice of the columns respectively, M_1 and M_3 are the molecular weight of **1** and **3** ($M_1 = 564.9$ and $M_3 = 226.3$). N_A is Avogadro's number ($6.02 \times 10^{23} \text{ mol}^{-1}$).

Therefore, n_1 and n_3 can be obtained by solving the following simultaneous equations.

$$\begin{cases} n_1 : n_3 = (100 - x) : x \\ n_1 M_1 + n_3 M_3 = \frac{\sqrt{3}}{2} N_A a^2 h \rho \end{cases}$$

where x is the mole% of **3** in the mixtures. The density of the diol compounds and the mixtures containing **3** is assumed to be 1.0 g cm^{-3} .

The intercolumnar distance (a) of the mixtures 1/3(x) and 2/3(x) up to x = 40 are shown in Figure S5. The average number of diol molecules 1 (n_1) and 2 (n_2) and protic salt (n_3) in the mixtures per cross-sectional slice of the columns are shown in Figure S6 and S7.

Figure S5. Intercolumnar distance of the mixtures in the Col_h phase.

Figure S6. Average number of diol compound 1 (n_1 : •) and protic salt 3 (n_3 : •) per cross-sectional slice of the columns.

Figure S7. Average number of diol compound **2** (n_2 : •) and protic salt **3** (n_3 : **■**) per cross-sectional slice of the columns.

4. ¹H NMR spectra of 1,3, and the mixture 1/3(50)

The interactions of diol compound **1** and protic salt **3** were examined by ¹H NMR. The downfield shift of C(2) proton (H13) of imidazolium cation of **3** was observed.

Figure S8. ¹H NMR spectra of diol **1**, protic salt **3**, and the equimolar mixture of **1** and **3**.

5. ¹³C NMR spectra of 1, 2, 3, 1/3(50), and 2/3(50)

The interactions of diol compound and protic salt were examined by 13 C NMR. The carbonyl carbons of 1 and 2 appear at 167.2 ppm 169.2 ppm, respectively. No shifts of the carbonyl carbon are observed for the mixture s 1/3(50) and 2/3(50). These results suggest the carbonyl groups are not involved in specific interactions with protic salt 3.

Figure S9. ¹³C NMR spectra of single compound **1** and **3** and equimolar mixture **1/3**.

Figure S10. ¹³C NMR spectra of single compound **2** and **3** and equimolar mixture **2/3**.

6. IR spectra of single compounds 1-3 and the mixtures

The interactions of diol compounds 1, 2 and protic salt 3 were examined by FT-IR measurements. The IR spectra of single compounds 1, 2, and 3 are shown in Figure S11-S13, respectively. Figures S14-S17 indicate the IR spectra of the mixtures of 1, 2 with 3. The IR spectra of the mixtures containing 3 at the different concentration were also recorded (Fig. S18). vi

Figure S11. (a) Temperature dependent FT-IR spectra of compound 1 and (b) its enlarged view.

Figure S12. (a) Temperature dependent FT-IR spectra of compound 2 and (b) its enlarged view.

Figure S13. FT-IR spectra of protic salt 3 at room temperature.

For single compounds 1 and 2, the O-H stretching band around 3400 cm^{-1} is shifted to higher wavenumber as the temperature rises. The N-H and C=O bands are also slightly shifted to higher wavenumber.

Figure S14. (a) Temperature dependent FT-IR spectra of the mixture 1/3(30) and (b) its enlarged view.

Figure S15. (a) Temperature dependent FT-IR spectra of the mixture 2/3(30) and (b) its enlarged view.

Figure S16. (a) Temperature dependent FT-IR spectra of the mixture 1/3(50) and (b) its enlarged view.

Figure S17. (a) Temperature dependent FT-IR spectra of the mixture 2/3(50) and (b) its enlarged view.

Figure S18. FT-IR spectra of (a) the mixtures of compound 1 and protic salt 3 and (b) the mixtures of compound 2 and protic salt 3 at 70 $^{\circ}$ C.

7. POM images of the uniaxially oriented 2/3(20) in the Col_h phase

A uniaxially parallel orientation of the columns of the mixture 2/3(20) has been achieved between the comb-shaped gold electrodes on a glass substrate by the application of mechanical shear force to the sample at 120 °C.

Figure S19. POM images of the uniaxially oriented mixture 2/3(20) under a crossed Nicols condition. (a) The shearing direction is parallel to the polarizer axis. (b)The sample of (a) is rotated by 45 °. Arrows indicate the directions of the shear force (S), analyzer (A) and polarizer (P) axes.

8. Vogel-Tamman-Fulcher plots of the ionic conductivities for mixtures 1/3(x) and 2/3(x)

The temperature dependence of the ionic conductivities for the mixtures 1/3(x) and 2/3(x), where x denotes the mole% of 3, are fitted by the Vogel-Tamman-Fulcher (VTF) equation:

$$\sigma = \frac{A}{\sqrt{T}} exp\left(\frac{-B}{T - T_0}\right)$$

where σ and T are the ionic conductivity and the absolute temperature. A, B and T₀ are fitting parameters. The parameter A (S m⁻¹ K^{1/2}) is related to the carrier ion number. The parameter B (K) is related to the activation energy. The product of B (K) and the molar gas constant (8.31 J K⁻¹ mol⁻¹) has the dimension of activation energy (J mol⁻¹). T₀ (K) is the ideal glass transition temperature at which the configurational entropy vanishes.

The temperature dependencies of ionic conductivities for the mixtures 1/3(x) and 2/3(x) are well fitted by the VTF equation. The VTF fitting parameters are summarized in Table S1. For example, the VTF fitting of the ionic conductivities for the mixture 2/3(20) in the Col_h phase is shown in Figure S20. The VTF plots of the ionic conductivities for the mixtures 1/3(x) and 2/3(x) shown in Figure S21 are depicted as straight lines.

Figure S20. Arrhenius plots for the ionic conductivity of the mixture 2/3(20). The solid line is the fitting result of the value of ionic conductivity on the VTF equation.

	A (S m ⁻¹ K ^{1/2})	<i>B</i> (K)	<i>T</i> ₀ (K)	R^2
1/3 (20)	0.032	625.9	238.8	0.9983
1/3 (30)	0.121	751.3	229.7	0.9991
1/3 (50)	13.10	2161.1	124.82	0.9972
2/3 (20)	0.049	877.71	242.34	0.9984
2/3 (30)	0.173	847.73	239.43	0.9996
2/3 (50)	14.35	2480.1	128.02	0.9986

Table S1. VTF fitting parameters of the ionic conductivities for mixtures 1/3(x) and 2/3(x).

_

Figure S21. VTF plots of the ionic conductivities for (a) the mixture 1/3(x) and (b) the mixture 2/3(x) in the liquid-crystalline phases. The mixtures 1/3(20), 1/3(30), 2/3(20), and 2/3(30) form the Col_h phases. The mixtures 1/3(50) and 2/3(50) exhibit the S_A phases.

9. DSC thermograms of 1, 2 and their mixtures with 3

Figure S22. DSC thermograms of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d) mixture 1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at the scanning rate of 10 K/min.

Figure S23. DSC thermograms of (a) compound **2**, (b) mixture 2/3(10), (c) mixture 2/3(20), (d) mixture 2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at the scanning rate of 10 K/min.

Figure S24. DSC thermograms of (a) the mixtures 1/3(x) and (b) the mixtures 2/3(x) on cooling at the scanning rate of 10 K/min.

Figure S25. DSC thermograms of protic salt **3** at the scanning rate of 10 K/min.

19

10. Wide-angle XRD diffraction patterns of the mixtures

Figure S26. Wide-angle XRD patterns of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d) mixture 1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at 70 °C.

Figure S27. Wide-angle XRD patterns of (a) compound 2, (b) mixture 2/3(10), (c) mixture 2/3(20), (d) mixture 2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at 70 °C.

	(100) [Å]	(200) [Å]
1	39.41	19.71
1/3 (10)	45.04	21.02
1/3 (20)	46.95	21.96
1/3 (30)	47.97	22.87
1/3 (40)	50.73	23.99
1/3 (50)	49.04	22.75

Table S2. The values of *d*-spacing for the mixtures 1/3(x) at 70 °C.

Table S3. The values of *d*-spacing for the mixtures 2/3(x) at 70 °C.

	(100) [Å]	(200) [Å]
2	37.72	18.87
2/3 (10)	44.14	20.63
2/3 (20)	47.97	22.29
2/3 (30)	50.73	23.36
2/3 (40)	55.17	25.66
2/3 (50)	49.04	22.87

Figure S28. Wide-angle XRD pattern of protic salt 3 at 25 °C.