Supplementary Material (ESI) for **Journal of Materials Chemistry A** This journal is <sup>Q</sup> The Royal Society of Chemistry 2012

# Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaics

Shi-Yong Liu,<sup>abc</sup> Jae Woong Jung,<sup>a</sup> Chang-Zhi Li,<sup>ab</sup> Jiang Huang,<sup>ad</sup> Jianyuan Zhang,<sup>a</sup> Hongzheng Chen\*<sup>b</sup> and Alex K.-Y. Jen\*<sup>ab</sup>

<sup>a</sup> Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, Washington 98195, USA

<sup>b</sup> Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China

<sup>c</sup> Department of Pharmacy & Chemistry, Taizhou University, Taizhou 317000, P. R. China

<sup>d</sup> School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

# Contents

| 1. Synthesis of intermediates TBPM, TBPS and Ph-DPP                                            | S2  |
|------------------------------------------------------------------------------------------------|-----|
| 2. Figs. S1-5 (NMR and MS spectra)                                                             | S4  |
| 3. Fig. S6 (DSC curves of C-DPP and Si-DPP)                                                    | S9  |
| 4. Fig. S7 (UV-vis absorption spectra of C-DPP and Si-DPP solutions in CHCl <sub>3</sub> )     | S9  |
| 5. Fig. S8 (UV-vis absorption spectra of BHJs of 3D-DPP:PC <sub>71</sub> BM )                  | S10 |
| 6. Fig. S9, Table S1 (OPVs of Si-DPP:N2200 processed by various solvents)                      | S10 |
| 7. Fig. S10. (The structure of DF-N2200)                                                       | S11 |
| 8. Fig. S11 (Normalized UV-vis absorption and IPCE spectra of 3D-DPP:N2200 BHJs)               | S11 |
| 9. Fig. S12 (charge tranfer between 3D-DPP donors with N2200 and PC <sub>71</sub> BM acceptor) | S11 |
| 10. Fig. S13 (Models of 3D-DPP:PC <sub>71</sub> BM and 3D-DPP:N2200 BHJs)                      | S12 |
| 11. Fig. S14 (PL spectra of 3D-DPP and 3D-DPP:PC <sub>71</sub> BM BHJs)                        | S12 |
| 12. Fig. S15 (AFM height images of 3D-DPP:N2200 and 3D-DPP:PC <sub>71</sub> BM BHJs)           | S13 |
| 13. Fig. S16 (J-V curves for hole-only and electron-only devices.)                             | S13 |
| 14. References                                                                                 | S13 |

# Synthesis of Intermediates TBPM, TBPS and Ph-DPP



Scheme S1

Scheme S1 shows the synthetic route of intermediate compound **TBPM**, according to the reported procedure.<sup>[S1]</sup> Tetraphenylmethane (1.6 g, 5 mmol) was warmed with stirring to 30-35 °C in 25 mL CCl<sub>4</sub> containing 0.05 g iron filings. Bromine (4 g, 25 mmol) was added cautiously and slowly, maintaining the temperature. A solution of aqueous alkali (KOH) was used in a bubbler trap attached to the end of a condenser to avoid HBr fumes. After several hours at 30-35 °C the solution was refluxed for 1 day at which time the dark-brown solution had become paler and all the initially insoluble tetraphenylmethane had dissolved. The solution was then cooled to room temperature and red-brown crystals were collected. After crystallization from a chloroform-methanol mixture, pale, off-white crystals were obtained. Yield, 3.2 g (96%); **TBPM**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 –7.53 (d, J = 8.4, 8H), 7.35 –7.32 (d, J = 8.4, 8H).



Scheme S2

Scheme S2 shows the synthetic route of intermediate compound **TMPS**. Based on the reported procedure with slight modifications,<sup>[S2]</sup> detailed procedures are as follows. A solution of 1,4-dibromobenzene (11.8 g, 50 mmol) in anhydrous ether (125 mL) was stirred at  $-10^{\circ}$ C under argon and treated dropwise with a solution of butyllithium (20 mL, 2.5 M in hexane, 50 mmol). The resulting mixture was kept at  $-10^{\circ}$ C for 15 min, and then SiCl<sub>4</sub> (1.43 mL, 12.5 mmol) was added dropwise. The mixture was stirred at  $-10^{\circ}$ C for 30 min and at 25°C for 12 h. Then 1 M aqueous HCl was added, and the resulting mixture was extracted with ether. The combined extracts were washed with H<sub>2</sub>O and brine, dried over MgSO<sub>4</sub>, and filtered. Volatiles were removed by evaporation under reduced pressure, and the residue was recrystallized twice from ethanol to afford colorless crystal of tetrakis(4-bromophenyl)silane. **TMPS**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 –7.51 (d, *J* = 8.4, 8H), 7.42 –7.32 (d, *J* = 8.4, 8H).



Scheme S3

Scheme S3 shows the synthetic route of intermediate compound **Ph-DPP**, according to our previously reported procedure.<sup>[S3]</sup> **Ph-DPP**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.90 (d, *J* = 3.9 Hz, 1H), 8.64 (d, *J* = 4.2 Hz, 1H), 7.65 (d, *J* = 5.1 Hz, 1H), 7.29 – 7.18 (m, 2H), 4.03–3.92 (m, 4H), 1.84(m, 2H), 1.38–1.23 (m, 16H), 0.91–0.83 (m, 12H).

Supplementary Material (ESI) for Journal of Materials Chemistry A



Fig. S1 <sup>1</sup>H NMR spectra of TBPM, TBPS and Ph-DPP

Supplementary Material (ESI) for Journal of Materials Chemistry A

This journal is <sup>e</sup> The Royal Society of Chemistry 2012



**Fig. S2** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of **C-DPP**.

This journal is <sup>Q</sup> The Royal Society of Chemistry 2012



Fig. S3 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of Si-DPP.

This journal is <sup>e</sup> The Royal Society of Chemistry 2012 D:\Data\Alex Jen\LSY082601\Lys082601\0\_E21\1



D:\Data\Alex Jen\LYS082601\Lys082601\0\_E21\1

MALDI SPECTRUM 8/28/2014 12:57:39 PM



Fig. S4 MALDI-TOF MS spectrum of C-DPP, calcd: 2715.89; found: 2716.12.

This journal is <sup>e</sup> The Royal Society of Chemistry 2012



Fig. S5 MALDI-TOF MS spectrum of Si-DPP, calcd: 2731.97; found: 2732.09.

m/z



Fig. S6 DSC curves of C-DPP and Si-DPP (neither melting nor re-crystallization was detected).



Fig. S7 UV-vis absorption spectra of C-DPP and Si-DPP solutions in CHCl<sub>3</sub>.

Supplementary Material (ESI) for **Journal of Materials Chemistry A** This journal is <sup>Q</sup> The Royal Society of Chemistry 2012



**Fig. S8** UV-vis absorption spectra of BHJs of C-DPP:PC<sub>71</sub>BM and Si-DPP: PC<sub>71</sub>BM. (They show mainly the features of 3D-DPPs absorption, along with the absorption less than 350 nm arising from  $PC_{71}BM$ .)



Fig. S9 J-V curves of Si-DPP:N2200 processed by various solvents.

**Table S1** Effects of processing solvents on the OPV performance ofSi-DPP:N2200.

| Solvents                                                               | $V_{OC}[V]$ | J <sub>SC</sub> [mA cm <sup>-2</sup> ] | FF   | PCE<br>[%] |
|------------------------------------------------------------------------|-------------|----------------------------------------|------|------------|
| CF                                                                     | 0.85        | 2.29                                   | 0.52 | 1.03       |
| CB                                                                     | 0.82        | 4.00                                   | 0.53 | 1.73       |
| CF/CB <sup>a)</sup>                                                    | 0.87        | 7.85                                   | 0.55 | 3.76       |
| CF/CB/CN <sup>b)</sup>                                                 | 0.87        | 8.32                                   | 0.56 | 4.02       |
| <sup>a)</sup> CF/CB (1:1, v/v); <sup>b)</sup> CF/CB/CN (1:1:0.03, v/v) |             |                                        |      |            |



Fig. S10 The structure of di-F-N2200.



**Fig. S11** Normalized UV-vis absorption and IPCE spectra of 3D-DPP:N2200 BHJs. (The trends of UV-vis and EQE spectra of 3D-DPP:N2200 BHJs correlate well with each other).



**Fig. S12** Photo-absorption and photo-generated charge transfer between 3D-DPP donors with N2200 and  $PC_{71}BM$  acceptors (As compared with 3D-DPPs:PC<sub>71</sub>BM, both the photon-generated electron on donors (3D-DPPs) transferring to acceptor (N2200) and the photon-generated hole on acceptor transferring to donors contributes to the enhanced  $J_{SC}$ s).

This journal is <sup>e</sup> The Royal Society of Chemistry 2012



**Fig. S13** Proposed models for the D-A distributions in the BHJs of 3D-DPP:PC<sub>71</sub>BM and 3D-DPP:N2200. (a)The intimate D-A mixing between 3D-DPPs and PCBM will enhance the quenching of PL emission, however, but it will prevent the formation of suitable phase separation and adversely affect charge separation; b) The blend of crystalline N2200 and amorphous 3D-DPPs allows easier nanoscale phase separation, facilitating better charge separation and transport.)



**Fig. S14** Steady PL spectra of **C-DPP** and **Si-DPP** films, and **C-DPP**:PC<sub>71</sub>BM and **Si-DPP**:PC<sub>71</sub>BM BHJs(excited at 600 nm).

This journal is <sup>e</sup> The Royal Society of Chemistry 2012



**Fig. S15** AFM height images (a, b, c, d) and corresponding phase images (e, f, g, h) of BHJs C-DPP:N2200, Si-DPP:N2200, C-DPP:PC<sub>71</sub>BM, and Si-DPP:PC<sub>71</sub>BM. Scale:  $2 \mu m \times 2 \mu m$ .



Fig. S16 J-V curves for a) hole-only and b) electron-only devices.

#### References

[S1] L. M. Wilson, A. C. Griffin, *J. Mater. Chem.*, 1993, **3**, 991.
[S2] J.-H. Fournier, X. Wang, J. D. Wuest, *Can. J. Chem.*, 2003, **81**, 376.
[S3] S. Liu, M. Shi, J. Huang, Z. Jin, X. Hu, J. Pan, H. Li, A. K.-Y. Jen, H.-Z. Chen, *J. Mater. Chem. A*, 2013, **1**, 2795.