## Role of Zinc Oxide and Carbonaceous Nanomaterials in Non-Fullerene Based Polymer Bulk Heterojunction Solar Cells for Improved Cost-to-Performance Ratio

Rajni Sharma<sup>1</sup>, Firoz Alam<sup>2</sup>, A. K. Sharma<sup>3</sup>, V.Dutta<sup>2</sup>, S.K.Dhawan<sup>1</sup>



S1: Microwave assisted hydrothermal reaction showing variation of pressure, power and temperature during  $Z@C_{dots}$  synthesis.



S2: XRD of procured RGO, as synthesized ZnO nanoparticles and ZnO/C-dots nanocomposite ( $Z@C_{dots}$ ) describing phases and crystallinity.



S3: UV-Vis spectra of as synthesized ZnO and Z@G nanocomposite; with absorption peak at 364 nm and 372 nm, demonstrating the shift in spectrum of nanocomposite



S4: Raman spectra of RGO and Z@G nanocomposite; showing changes in D and G band.



S5: Contact angle measurement of Z@C $_{dots}$  nanocomposite; with contact angle higher than  $90^{\circ}$  (showing hydrophobic nature of Z@C $_{dots}$ )