Electronic Supplementary Information for

Influence of Steric Bulk on the Oxidative Stability of Phenolate-Based Magnesium-Ion Battery Electrolytes

Adam J. Crowe and Bart M. Bartlett*

Department of Chemistry University of Michigan 930 N. University Avenue Ann Arbor, MI 48109-1055, United States Email: bartmb@umich.edu

Table of Contents

Detailed Experimental Section

Synthesis. All electrolyte solutions were prepared within a N₂-filled glove box (Vacuum Atmospheres) analogous to the following procedure represented for 0.5 M ^RPhOMgCl and 0.25 M AlCl₃ ($R =$ *f*Bu). 2 M ethylmagnesium chloride in THF (8 mmol, 4 mL) was slowly added via syringe to a solution of 4-*tert*butylphenol (8 mmol, 1.20 g) dissolved in dry THF (4 mL). The mixture was allowed to stir overnight, forming ^RPhOMgCl (R = *'*Bu). Then, a 0.5 M solution of AlCl₃ (4 mmol, 8 mL) in THF (0 °C) was prepared in a 20 mL scintillation, warmed to room temperature, and added to the phenolatemagnesium chloride. This solution was stirred for 8 hours, providing a clear colorless solution of $0.5 M$ ^RPhOMgCl and 0.25 M AlCl₃ (R = *'*Bu).

Electrolyte Analysis. 27Al NMR was performed on a Varian VNMRS-700 MHz spectrometer in THF with chemical shifts reported relative to a solution of AlCl₃ in D_2O with a drop of concentrated HCl. Peak assignments were made with reference to previous work in the Bartlett group.¹ Cyclic voltammograms were recorded using a CH Instruments Electrochemical Workstation 1000A or 660C while using a Pt-disk working and Mg-foil counter- and reference electrodes. Measurements were performed starting at open circuit potential and scanned cathodically within a custom-designed, three-necked, sealed glass cell. Conductivity measurements were obtained using a YSI Model 3200 meter equipped with a 3253 conductivity cell at room temperature. A slurry of $Mo₆S₈$ was prepared by mixing an 8:1:1 (by weight) ratio of $Mo₆S₈$, super-P carbon powder, and polyvinylidine fluoride (PVDF) binder, suspended in Nmethyl-2-pyrrolidinone (NMP). The active material loading was approximately 2 mg/cm². The slurry was doctor bladed onto a stainless steel current collector and dried in an over at 120 °C, placed in a 2016-type coin cell with a Mg-foil anode and a soaked glass fiber separator in 0.5 M RPhOMgCl and 0.25 M AlCl₃ $(R = 2,4,6-Me₃)$ in THF electrolyte. Cycling was carried out on a Vencon UBA4 battery analyzer charger and conditioner (Toronto, Canada) with cut-off voltages of 1.6 and 0.2 V vs. $Mg^{2+\prime0}$. Transference numbers $(t₊)$ were estimated assuming deposition directly from Mg^{2+} , as described in a previous report.² In brief, chronopotentiometry was used to deposit Mg metal using a Pt disk working electrode, and Mg strips as reference and counter electrodes, with 1 mL of electrolyte. A controlled amount of charge was passed between the electrodes, and magnesium deposits were then digested in 10 mL of 0.1 M $HNO₃$ solution. The prepared solution was analyzed with ICP-AES for Mg^{2+} using a Perkin-Elmer Optima 2000DV. Samples were referenced to an yttrium internal standard and concentrations of magnesium were determined from the maximum intensity compared to those of standard reference solutions.

- 1. E. G. Nelson, J. W. Kampf and B. M. Bartlett, *Chem. Commun.*, 2014, **50**, 5193-5195.
- 2. Benmayza, A.; Ramanathan, M.; Arthur, T. S.; Matsui, M.; Mizuno, F.; Guo, J.; Glans, P. A.; Prakash, J. *J. Phys. Chem. C*, 2013, **117**, 26881.

Figure S1. Cyclic voltammograms of 0.5 M ^RPhOMgCl and 0.25 M AlCl₃ R = 4-Me, 4-Et, 4-^{*i*}Pr, 4-^{*s*}Bu, and 4 - t Bu.

Figure S2. ²⁷Al NMR chemical shifts and assignments for 0.5 M ^RPhOMgCl and 0.25 M AlCl₃ (R = 4-Me, 4-Et, 4-*ⁱ* Pr, 4-*^s* Bu, and 4-*^t* Bu).

Figure S3. Typical ²⁷Al NMR spectrum for 0.5 M ^RPhOMgCl and 0.25 M AlCl₃ (R = 2,4,6-Me₃ and 2,6- $Me₂$).

Figure S4. Typical ²⁷Al NMR spectrum 0.5 M ^RPhOMgCl and 0.25 M AlCl₃ (R = 2,4,6-^{*t*}Bu₃ and 2,6 t Bu₂).

Figure S5. Charge–Discharge curves of Mo₆S₈ *vs.* Mg-foil in 0.5 M^RPhOMgCl and 0.25 M AlCl₃ (R = 2,4,6-Me3) in THF at *C*/10.

Table S1. Chronopotentiometric deposition details and estimated transference numbers.

$$
t_+ = 1 - (z_+ F \Delta C^* V / q)
$$

Transference number (t_+) for Mg²⁺-containing complex cation with a valency (z_+) of 2, Faraday's constant ($F = 26.801$ Ah/mol), change in bulk magnesium ion concentration (ΔC^* / mmol L⁻¹), V is the volume of electrolyte (1 mL), and charge passed (q / mAh) . We note from Faraday's law that the theoretical Mg²⁺ concentration is 23.58 ppm for a monovalent cation (z_+ = 1) being responsible for Mg metal deposition. However, a more reasonable value, 5.89 ppm results for a divalent cation $(z_{+} = 2)$ being responsible for Mg metal deposition.

