Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Boost up Dielectric Constant and Push down Dielectric Loss of Carbon Nanotube/Cyanate Ester Composites through Gradient and Layered Structure Design

Binghao Wang, Limei Liu, Guozheng Liang^{*}, Li Yuan, Aijuan Gu^{*}

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Materials Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China

S1. Dielectric properites of MWCNT/CE composites

Figure S1. The real dielectric constant and loss tangent as a function of frequency for CE resin and MWCNT/CE composites with different loadings of MWCNTs

S2. The percolation threshold of MWCNT/CE composites

According to the percolation theory, there is a universal relationship between the AC conductivity (σ) and the loading of conductor (f) as shown in **Equation S1**.

$$\sigma \propto (f - f_c)^t, f > f_c \tag{S1}$$

where f_c is the percolation threshold, t is the critical conductivity exponent.

Using a least-squares fit for repeated experiments as shown in the inset plot of Figure S2b, the f_c value of MWCNT/CE composites was calculated to be 0.39 wt %.

Figure S2. (a) The AC conductivity at 1 Hz as a function of MWCNTs concentration up to 1.0 wt% of MWCNT/CE composites. (b) The experimental data and linear fit of log (Conductivity) vs

 $\log(f - f_c)$ for MWCNT/CE composites.

Figure S3. The AC conductivities of (a) g-MWCNT0.3/CE-x%, (b) g-MWCNT0.4/CE-x% and (c) g-MWCNT0.5/CE-x% nanocompoistes over a wide frequency range.

S4. SEM images

Fig. S4 The SEM images of the top, middle, and bottom parts of the cross-sections along the thickness direction of (a) g-MWCNT0.5/CE-0, (b) g-MWCNT0.5/CE-75% and (c) g-MWCNT0.5/CE-100% composites.

S5. Schematic diagrams and SEM images

Figure S5. The schematic diagrams of $[g-MWCNT0.5/CE-50\%]_2$ (a) and PE- $[g-MWCNT0.5/CE-75\%]_2$ (b) materials. (c) and (d) are the SEM images of the interfaces between two layers labelled by blue squares in (a) and (b), respectively. The PE layer has a thickness of ~7 µm.

Sample	$T_{\rm e}(^{\rm O}C)$	T_{\max} (°C)			
Sample	$I_{di}(C)$	T_{max1} (°C)	T_{max2} (°C)		
Top of MWCNT0.3/CE-0	339.0	427.0	602.6		
Bottom of MWCNT0.3/CE-0	395.9	433.5	606.4		
Top of MWCNT0.4/CE-0	331.0	427.7	605.6		
Bottom of MWCNT0.4/CE-0	402.9	434.8	611.9		
Top of MWCNT0.5/CE-0	350.3	431.0	608.9		
Bottom of MWCNT0.5/CE-0	407.7	434.1	620.3		
MWCNTs	468.3	50	52.9		

Table S1. The parameters derived from TG and DTG curves.

Filler ^{b)}	Filler loading	Polymer matrix ^{c)}	$\mathcal{E}_{p,\max}$ $(\tan \delta_p)$	$\mathcal{E}_{c,\max}$	$\tan \delta_c$	η d)	Reference
Hydrazine reduced GO	1.7 vol%	P(VDF-TrFE- CFE)	57 (0.05)	10000	2	4.39	[S1]
Graphene-TiO ₂ sheets	10.9 vol%	PS	2.7 (0.004)	1741	0.39	6.61	[S2]
MWCNTs	0.5 wt%	CE	3.1 (0.004)	306	0.21	4.7	[S3]
Chlorination reduced GO	0.5 wt%	CEP	17 (0.04)	169	0.05	7.95	[S4]
MWCNTs	0.5 wt%	CE	3.1 (0.004)	168	0.006	36.13	[S5]
Rutile rods	36.9 vol%	PS	2.0 (0.008)	80	0.14	2.29	[S6]
Graphene	0.17wt%	CEP	17 (0.09)	77	0.16	2.55	[S7]
Graphene nanosheets	4.0 vol%	P(VDF-TrFE- DB)	12 (0.04)	74	0.08	3.08	[S8]
Carbon nanofibers	2.5 wt%	PVDF	13 (0.13)	68	0.06	11.33	[S9]
MWCNTs	25 vol%	PSF	5 (0.02)	58	0.05	4.64	[S10]
PPy coated MWCNTs	10 vol%	PS	2.7 (0.004)	44	0.07	0.93	[S11]
rGO-MWCNTs	0.062 wt%	CEP	15 (0.036)	32	0.051	1.61	[S12]
BaTiO ₃	10.8 vol%	PVDF-TrFE	14 (0.02)	30	0.03	1.43	[\$13]
MWCNTs	0.34 vol%	PP	2.4 (0.002)	30	0.06	0.42	[S14]
GO	5.0 wt%	PDMS	3.1 (0.01)	8	0.005	5.16	[\$15]
MWCNTs	0.5 wt%	CE	3.1 (0.004)	1027	0.017	77.95	This work

Table S2. Key parameters of high-k polymer composites with low dielectric loss.^{a)}

a) The data are arranged with decreasing dielectric constant of the composites. Some parameters not reported directly in the references are derived from the corresponding curves. $\varepsilon_{p,\max}$: The maximum dielectric constant of polymer matrix. $\tan \delta_p$: dielectric loss tangent of polymer matrix at corresponding frequencies. $\varepsilon_{c,\max}$: The maximum dielectric constant of the composites. $\tan \delta_c$: dielectric loss tangent of the composites at corresponding frequencies.

- b) MWCNTs: Multi-wall carbon nanotubes, PPy: Polypyrrole, GO: Graphene oxide, BaTiO₃: Barium titanate.
- c) P(VDF-TrFE-CFE): Poly(vinylidene fluoride-co-trifluoroethylene- co-chlorofluoroethylene);
 PS: Polystyrene; CE: Cyanate ester; CEP: Cyanoethyl pullulan polymer; P(VDF-TrFE-DB):
 Poly-(vinylidenefluoride-co-trifluorethylene) with double bonds; PVDF: Poly(vinylidene fluoride); PSF: Polysulfone; PVDF-TrFE: Poly(vinylidene fluoride-co-trifluoroethylene); PP: Polypropylene; PDMS: Poly(dimethyl siloxane).
- d) η is defined as the proportion of the variation of dielectric constant to the variation of dielectric loss tangent, shown in **Equation S2**.

$$\eta = \varepsilon_{c,\max} \tan \delta_p / \varepsilon_{p,\max} \tan \delta_c$$
(S2)

References

[S1] M. N. Almadhoun, M. N. Hedhili, I. N. Odeh, P. Xavier, U. S. Bhansali, H. N. Alshareef, *Chem. Mater.* **2014**, *26*, 2856.

[S2] C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, *J. Mater. Chem.* **2011**, *21*, 17729.

[S3] B. H. Wang, D. K. Qin, G. Z. Liang, A. J. Gu, L. M. Liu, L. Yuan, *J. Phys. Chem. C* 2013, *117*, 15487.

[S4] J. Y. Kim, W. H. Lee, J. W. Suk, J. R. Potts, H. Chou, I. N. Kholmanov, R. D. Piner, J. Lee, D. Akinwande, R. S. Ruoff, *Adv. Mater.* **2013**, *25*, 2308.

[S5] B. H. Wang, G. Z. Liang, Y. C. Jiao, A. J. Gu, L. M. Liu, L. Yuan, W. Zhang, *Carbon* **2013**, *54*, 224.

[S6] M. Crippa, A. Bianchi, D. Cristofori, M. D'Arienzo, F. Merletti, F. Morazzoni, R. Scotti, R. Simonutti, *J. Mater. Chem. C* **2013**, *1*, 484.

[S7] J. Y. Kim, J. Lee, W. H. Lee, I. N. Kholmanov, J. W. Suk, T. Kim, Y. Hao, H. Chou, D. Akinwande, R. S. Ruoff, *ACS Nano* **2014**, *8*, 269.

[S8] F. Wen, Z. Xu, S. Tan, W. Xia, X. Wei, Z. Zhang, *ACS Appl. Mater. Interfaces* **2013**, *5*, 9411.

[S9] L. L. Sun, B. Li, Y. Zhao, G. Mitchell, W. H. Zhong, *Nanotechnology* **2010**, *21*, 305702.

[S10] H. Liu, Y. Shen, Y. Song, C. W. Nan, Y. Lin, X. Yang, *Adv. Mater.* **2011**, *23*, 5104.

[S11] C. Yang, Y. Lin, C. W. Nan, *Carbon* **2009**, *47*, 1096.

[S12] J. Y. Kim, T. Kim, J. W. Suk, H. Chou, J. H. Jang, J. H. Lee, I. N. Kholmanov, D. Akinwande, R. S. Ruoff, *Small* **2014**, *10*, 3405.

[S13] Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.-W. Nan, J. Mater. Chem. 2012, 22, 8063.

[S14] A. Ameli, M. Nofar, C. B. Park, P. Potschke, G. Rizvi, *Carbon* 2014, 71, 206.

[S15] Z. Wang, J. K. Nelson, H. Hillborg, S. Zhao, L. S. Schadler, *Adv. Mater.* **2012**, *24*, 3134.