Electronic Supplementary Information for

Perovskite Solar Cells Based on Bottom-Fused TiO₂ Nanocones

Guiming Peng,^{1,2,3} Jiamin Wu,² Suqin Wu, ¹ Xueqing Xu,^{3*} James E. Ellis,⁴ Gang

Xu^{3*} Alexander Star,⁴ and Di Gao^{2*}

5

¹School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China

²Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States

- ³CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
 ⁴Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
 Corresponding authors: Xueqing Xu (xuxq@ms.giec.ac.cn), Gang Xu
- 15 (xugang@ms.giec.ac.cn), Di Gao (gaod@pitt.edu)

TiO₂ nanoparticle photoanode preparation

The 30 nm-thick compact TiO₂ layer, acting as blocking layer, was deposited 5 onto FTO glass by spray-pyrolyzing a solution of titanium (IV) isopropoxide in ethanol and acetylacetone at 450 °C. Afterwards, TiO₂ nanoparticle layer was prepared by the doctor-blade method using the commercial TiO₂ paste (18NR-T), and then cacinated at 500 °C in air for 30 min before use.

Sequential deposition process

10 Firstly, PbI₂ in DMF (462 mg/mL) was spin-coated onto the photoanode and was heated at 70 °C to dry over. Afterwards, the TiO₂/PbI₂ film was dipped into a 10 mg/mL CH₃NH₃I IPA solution for 20 seconds and rinsed with IPA. After drying, the HTM filtration and Au electrode deposition methods were the same as illustrated in the main text.

15 Equations for Voc decay curve fitting

SNC-Device:

$$V_{oc} = 0.3125 + 1.04028 \ e^{-\frac{(t-59.9835)}{0.01038}} + 0.07309 \ e^{-\frac{(t-59.9835)}{0.11218}}$$

SNR-Device:

 $V_{oc} = 0.30592 + 0.07266 e^{-\frac{(t-59.98308)}{0.10858}} + 0.93873 e^{-\frac{(t-59.98308)}{0.01131}}$

20 SNP-Device:

 $V_{oc} = 0.27956 + 0.02549 e^{-\frac{(t-59.98703)}{0.07442}} + 0.71788 e^{-\frac{(t-59.98703)}{0.00858}}$

Figure S1. SEM images of TiO_2 nanostructures on FTO synthesized with (a) 0.1 ml,

5 (b) 0.2 ml, (c-d) 0.3 ml TBO using methanol as solvent. (c) Cross-sectional image. (d)
Top-view image. For (a-b), bottom right insets are the top-view images. The circled area in (a) is the substrate where there are no nanocones.

Figure S2. TiO₂ spheres synthesized without placing FTO substrate in the reactor.

5

Figure S3. SEM images of TiO_2 nanorods on FTO synthesized with 0.15 ml TBO using isopropanol as solvent. (a) Cross-sectional image. (b) Top-view image.

Figure S4. 2 M CH₃NH₃PbI₃ coated seeded-NCs.

Figure S5. 1.25 M CH₃NH₃PbI₃ coated seeded-NCs.

Figure S6. Schematic illustratons of the devices and nanostructures. (a) SNC-Device.

(b) SNR-Device. (c) An individual TiO₂ nanocone and a rectangular nanorod.

Figure S7. (a) Top-view SEM image of $CH_3NH_3PbI_3/NCs$ obtained by sequential deposition method. (b) *J-V* characteristic of the device fabricated following the sequential deposition method.

Figure S8. (a) Cross-sectional SEM image of seeding spin-coated nanoparticle device

(SNP-Device). (b) *J-V* characteristic of the SNP-Device.

5 Figure S9. Digital photos of CH₃NH₃PbI₃ sensitized NCs.