# **Supporting Information For**

## Magnetic polydopamine decorated with Mg-Al-LDH nanoflakes as a

### novel bio-based adsorbent for simultaneous removal of heavy metals

#### and anionic dyes

Jie Li,<sup>acd</sup> Qiaohui Fan<sup>b</sup>, Yijin Wu,<sup>c</sup> Xiangxue Wang <sup>acd</sup>, Changlun Chen,<sup>d,e</sup> Zhiyong Tang,<sup>c\*</sup> and Xiangke Wang<sup>aef\*</sup>

- <sup>a.</sup> School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China.
- <sup>b.</sup> Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- <sup>c.</sup> Laboratory for Nanomaterials National Center for Nanoscience and Technology Beijing, 100190, P. R. China
- <sup>d.</sup> Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- e. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P.R. China
- <sup>f.</sup> NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

\*Corresponding author. E-mail: <u>xkwang@ncepu.edu.cn</u> (X. Wang); <u>zytang@nanoctr.cn</u> (Z. Tang).

|        |                                                 | Theoretical $C_s(mg/g)$ | Calculated C <sub>S</sub> (mg/g) | $k_2(mg/(mg min))$ |  |
|--------|-------------------------------------------------|-------------------------|----------------------------------|--------------------|--|
|        | LDH, C <sub>Cu(II)</sub> =20 mg/L               | 19.1                    | 20.5                             | 1.5                |  |
|        | MPL <sub>3</sub> , C <sub>Cu(II)</sub> =4 mg/L  | 22.5                    | 25.8                             | 2.3                |  |
| Cu(II) | MPL <sub>3</sub> , C <sub>Cu(II)</sub> =10 mg/L | 47.9                    | 28.2                             | 1.2                |  |
|        | MP, C <sub>Cu(II)</sub> =20 mg/L                | 54.1                    | 59.5                             | 1.6                |  |
|        | MPL <sub>3</sub> ,C <sub>Cu(II)</sub> =20 mg/L  | 67.7                    | 67.1                             | 7.6                |  |
|        | MPL <sub>3</sub> , MO                           | 200.1                   | 198.4                            | 0.1                |  |
|        | MPL <sub>3</sub> , CR                           | 170.6                   | 165.4                            | 0.1                |  |

**Table S1** Theoretical and calculated  $C_s$  values, pseudo-second-order rate constants,  $k_2$ , and

| correlation | coefficient va | lues $(R^2)$ |
|-------------|----------------|--------------|
|             |                |              |



Fig. S1 Time profile of Cu(II) removal by the LDH, MP and MPL<sub>3</sub> assembly at  $pH = 5.6 \pm 0.1$ , I

= 0.01 M NaNO<sub>3</sub>, m/V = 0.1 g/L.



Fig. S2 Zeta potentials of the MPL<sub>3</sub> assembly as a function of solution pH.



Fig. S3 Distribution of Cu(II) species as a function of pH based on the equilibrium constants.

| Dyes | Molecular structure                                                                                                                                                                                                                                                                              | Dimensions<br>(nm) | Molecular<br>weight | λ <sub>max</sub><br>(nm) |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------|
| МО   | CH <sub>3</sub><br>N=N-SO <sub>3</sub> Na <sup>+</sup><br>CH <sub>3</sub>                                                                                                                                                                                                                        | 1.31×0.55×0.18     | 327                 | 465                      |
| CR   | <sup>+</sup> Na <sup>-</sup> O <sup>-</sup> S <sup>=</sup> O<br>N <sup>=</sup> N <sup>=</sup> N <sup>=</sup> N <sup>=</sup> N <sup>=</sup> N <sup>+</sup> | 2.62×0.74×0.43     | 697                 | 695                      |

Table S2 Physicochemical characteristics of the studied dyes

| Table S3 Parameters for Langmuir and Freundlich isotherm n | nodels |
|------------------------------------------------------------|--------|
|------------------------------------------------------------|--------|

|                           | Langmuir model               |             |       | Freundlich model                          |       |       |
|---------------------------|------------------------------|-------------|-------|-------------------------------------------|-------|-------|
|                           | C <sub>s max</sub><br>(mg/g) | b<br>(L/mg) | $R^2$ | $\frac{K_{\rm F}}{({\rm mg^{1-n}L^n/g})}$ | п     | $R^2$ |
| MPL <sub>3</sub> , Cu(II) | 75.013                       | 2.523       | 0.923 | 44.607                                    | 0.208 | 0.984 |
| MPL <sub>3</sub> , Cd(II) | 65.812                       | 0.158       | 0.969 | 16.437                                    | 0.476 | 0.985 |
| MPL <sub>3</sub> , Pb(II) | 55.517                       | 0.277       | 0.979 | 15.024                                    | 0.394 | 0.993 |
| MPL <sub>3</sub> , MO     | 624.893                      | 0.025       | 0.897 | 344.843                                   | 0.544 | 0.995 |
| MPL <sub>3</sub> , CR     | 584.563                      | 0.024       | 0.925 | 276.662                                   | 0.157 | 0.988 |
| LDH, Cu(II)               | 23.909                       | 0.470       | 0.964 | 8.563                                     | 0.379 | 0.973 |
| LDH, Cd(II)               | 21.489                       | 0.425       | 0.973 | 7.201                                     | 0.404 | 0.989 |
| LDH, Pb(II)               | 19.745                       | 0.136       | 0.956 | 3.079                                     | 0.568 | 0.961 |

Table S4 Summary of Cu(II), MO and CR adsorption isotherm constants and characteristics for

#### the binary-solute Freundlich isotherm

| Dye concentration (mg/L) |                                                  | 0      | 30     | 90     | 150    |  |  |  |
|--------------------------|--------------------------------------------------|--------|--------|--------|--------|--|--|--|
| Cu(II)+MO                |                                                  |        |        |        |        |  |  |  |
| Cu(II)                   | $K_{\rm F} ({ m mg^{1-}}$<br>${ m ^nL^n/g})$     | 44.607 | 45.727 | 50.136 | 55.425 |  |  |  |
|                          | n                                                | 0.208  | 0.491  | 0.613  | 0.392  |  |  |  |
|                          | R <sup>2</sup>                                   | 0.984  | 0.978  | 0.981  | 0.987  |  |  |  |
| Cu(II)+CR                |                                                  |        |        |        |        |  |  |  |
| Cu(II)                   | $K_{\rm F} ({ m mg^{1-}}$ $^{ m n}{ m L^{n}/g})$ | 44.607 | 48.835 | 55.321 | 64.083 |  |  |  |
|                          | n                                                | 0.208  | 0.316  | 0.505  | 0.418  |  |  |  |
|                          | <b>R</b> <sup>2</sup>                            | 0.984  | 0.976  | 0.982  | 0.975  |  |  |  |

| a <sub>ij</sub> - |    | Dye concentration (mg/L) |      |      |      |  |
|-------------------|----|--------------------------|------|------|------|--|
|                   |    | 0                        | 30   | 90   | 150  |  |
|                   | 5  | 0                        | 3.21 | 3.56 | 3.98 |  |
| i+j<br>Cu(II)+MO  | 10 | 0                        | 2.34 | 2.76 | 3.01 |  |
|                   | 15 | 0                        | 1.32 | 1.68 | 1.73 |  |

#### Table S5 Summary of competition coefficients for the binary systems

| a <sub>ij</sub>  |    | Dye concentration (mg/L) |      |      |      |  |
|------------------|----|--------------------------|------|------|------|--|
|                  |    | 0                        | 30   | 90   | 150  |  |
| i+j<br>Cu(II)+CR | 5  | 0                        | 3.54 | 3.87 | 4.06 |  |
|                  | 10 | 0                        | 1.23 | 1.34 | 3.15 |  |
|                  | 15 | 0                        | 0.45 | 0.67 | 1.98 |  |



Fig. S4 SEM image and the elemental distribution mapping of MPL<sub>3</sub> assembly after simultaneous

removal of Cu(II) and MO (initial concentration: 10 mg/L Cu(II) and 100 mg/L MO).



Fig. S5 Removal isotherm of different metal ions onto LDH (A) and MPL<sub>3</sub> assembly (B) simulated by the Langmuir model (solid line) and Freundlich model (dash line).  $pH = 5.6 \pm 0.1$ , I = 0.01M NaNO<sub>3</sub>, m/V = 0.1 g/L.



Fig. S6 XRD patterns of LDH before and after the removal of Cu(II).



Fig. S7 Evaluating the removal efficiency and reusability of  $MPL_3$  assembly in model textile effluent.