ESI for

Determining the Most Promising Anchors for CuSCN: Ab Initio Insights towards p-Type DSSCs

Kathy J. Chen,[†] Adèle D. Laurent,[†] Florent Boucher,[‡] Fabrice Odobel,[†] and Denis Jacquemin^{*,†,¶}

Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la

Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Institut des Matériaux Jean

Rouxel (IMN), Université de Nantes, 2 Rue de la Houssinière, BP32229, 44322 Nantes

Cedex 3, France, and Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France.

E-mail: Denis.Jacquemin@univ-nantes.fr

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

[†]CEISAM, Nantes

[‡]IMN, Nantes

[¶]IUF, Paris

Surface energies

Figure S-1: Convergence of surface energies (J/m^2) with the number of layers.

Comparison of contour plots

The adsorption energies for each combination of anchor and surface are standarized as $(x - \mu)/\sigma$ for a fair scale of comparison. The tables below show the pairwise distances computed for the matrix where the rows correspond to the four monodentate anchors and the columns to each x-y observation on the screening grid. The distance between each anchor is computed as the Euclidean distance, $d = \sqrt{\sum (x_i + y_i)^2}$.

Table S-I: Pairwise distances for anchors on (110)

	aniline	pyridine	thiophenol	thiophenoxide
aniline	_	5.29	4.90	8.78
pyridine	5.29	_	5.89	8.02
thiophenol	4.90	5.89	—	8.39
thiophenoxide	8.78	8.02	8.39	_

Table	S-II:	Pairwise	distances	for	anchors	on	(100)

	aniline	pyridine	thiophenol	thiophenoxide
aniline	_	4.44	5.79	7.29
pyridine	4.44	_	5.14	7.03
thiophenol	5.79	5.14	—	7.23
thiophenoxide	7.29	7.03	7.23	—

Binding distances of monodentate anchors

	aniline	pyridine	thiophenol	thiophenoxide
aniline	_	7.88	8.26	7.82
pyridine	7.88	_	6.77	6.85
thiophenol	8.26	6.77	_	7.06
thiophenoxide	7.82	6.85	7.06	_

Table S-III: Pairwise distances for anchors on (101)-S

Table S-IV: Pairwise distances for anchors on (101)-Cu

	aniline	pyridine	thiophenol	thiophenoxide
aniline	—	5.23	4.90	4.67
pyridine	5.23	—	5.04	3.43
thiophenol	4.90	5.04	—	4.18
thiophenoxide	4.67	3.43	4.18	—

Table S-V: Pairwise distances for anchors on (100)

	aniline	pyridine	thiophenol	thiophenoxide
aniline	—	5.75	6.68	7.46
pyridine	5.75	_	6.25	6.33
thiophenol	6.68	6.25	—	5.63
thiophenoxide	7.46	6.33	5.63	_

Table S-VI: Binding distances of monodentate anchor on thick slabs of CuSCN as measured between the anchor heteroatom and the nearest atom of the surface.

Cut	Anchor	Surface atom	Distance (Å)	Binding Energy
(110)	Thiophenoxide	Cu	2.21	0.17
(110)	Thiophenol	Cu	2.48	-0.21
(110)	Pyridine	Cu	2.10	-0.35
(110)	Aniline	Ν	3.06	-0.01
(100)	Thiophenoxide	Cu	2.19	-0.13
(100)	Thiophenol	Cu	2.31	-0.44
(100)	Pyridine	Cu	2.04	-0.74
(100)	Aniline	Cu	2.18	-0.10
(101)-S	Thiophenoxide	S	2.99	1.00
(101)-S	Thiophenol	S	3.25	0.10
(101)-S	Pyridine	Cu	2.40	0.21
(101)-S	Aniline	\mathbf{C}	2.89	0.02
(101)-Cu	Thiophenoxide	Cu	2.19	-3.87
(101)-Cu	Thiophenol	Cu	2.25	-0.92
(101)-Cu	Pyridine	Cu	1.98	-1.55
(101)-Cu	Aniline	Cu	2.04	-1.51
(001)	Thiophenoxide	Cu	2.26	-4.53
(001)	Thiophenol	Cu	2.30	-0.43
(001)	Pyridine	Cu	1.96	-1.12
(001)	Aniline	Cu	2.42	-0.42