Electronic Supplementary Information

In-situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting

Yang-Fan Xu, Hua-Shang Rao, Xu-Dong Wang, Hong-Yan Chen, Dai-Bin Kuang* and Cheng-Yong Su

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

Fax: (+86) 20-8411 3015.

E-mail: kuangdb@mail.sysu.edu.cn

Fig. S1 The cross-section views of the (a) AZO photoanode and AZO-ZFO photoanodes with different treating time: (b) 1 min, (c) 3 min, (d) 7 min.

Fig. S2 Al concentration in hydrothermal deposition solution *vs* Al concentration in the AZO as determined by EDS. It can be concluded that the Al concentration in AZO film is approximate half of that in solution.

Fig. S3 The digital photographs of the (a) AZO photoelectrode and AZO-ZFO photoelectrodes with different treating time: (b) 1 min, (c) 3 min, (d) 5 min, (e) 7 min.

Fig. S4 XRD pattern of the AZO-ZFO-3 min.

Fig. S5 The absorption spectra of AZO and AZO-ZFO photoelectrodes. Notably, A%= 1-T%-R%.

Fig. S6 The LSV curves under chopped illumination of photoelectrodes with (a) various film thickness and (b) Al dopant concentrations.

Fig. S7 Mott-Schottky plots of the AZO-ZFO-3 min sample measured in dark at 1 KHz, in 0.1 M Na₂SO₄ solution.

Fig. S8 The EDX mappings of AZO-ZFO-1min (a) and the corresponding line scanning data (b). To clearly illustrate the Fe distribution, the Fe/Zn plots as a function of scan position were processed according to the line scanning results.

Fig. S9 (a) The EDX mappings (b) the line scanning data and (c) the corresponding the Fe/Zn plots as a function of scan position (with bar) of AZO-ZFO-3min.

Fig. S10 (a) TEM image and (b) the corresponding HRTEM image of 0.5% AZO-ZFO-7 min. (c) The selected area electron diffraction (SAED) pattern, which can index to the single-phase AZO and the multi-phase ZFO.

Fig. S11 (a) Equivalent circuit model used to fit the EIS data. (b) The LSV curve of the ZnO-ZFO-3min sample.

Table S1 Comparison of photoelectrochemical water oxidation performances for zinc

 ferrite involved photoanodes.

Sample	Test Condition	Photocurrent density (mA cm ⁻²)	Ref.
Al:ZnO nanorod array/	100 mW cm ⁻² ,	1.72 @ 1.23 V _{RHE}	This
$ZnFe_2O_4$	$0.1 \text{ M Na}_2 \text{SO}_4$		work
ZnO nanorod / ZnFe2O4	100 mW cm ⁻² ,	$0.57 @ 0.8 V_{Ag/AgCl} (\sim \!\! 1.4 V_{RHE})$	1
	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$		
$TiO_2nanotube\ /\ ZnFe_2O_4$	100 mW cm ⁻² ,	${\sim}0.55 @~0.60 ~V_{SCE} ({\sim}1.23 ~V_{RHE})$	2
	0.01 M Na ₂ SO ₄		
ZnO nanorod / ZnFe ₂ O ₄	100 mW cm ⁻² ,	${\sim}0.045 @~0.6 ~V_{Ag/AgCl} ({\sim}1.2 ~V_{RHE})$	3
	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$		
ZnFe ₂ O ₄ nanorod array	100 mW cm ⁻² ,	0.24 @ 1.23 V _{RHE}	4
	1 M NaOH		
ZnFe ₂ O ₄ nanorods array	100 mW cm ⁻² ,	0.32 @ 1.23 V _{RHE}	5
	1 M NaOH		
ZnFe ₂ O ₄ thin films	100 mW cm ⁻² ,	$0.35 @ 0.23 V_{Ag/AgCl} (\sim 1.23 V_{RHE})$	6
	1 M NaOH		
$\alpha\text{-}Fe_2O_3 / \ ZnFe_2O_4$	100 mW cm ⁻² ,	0.80 @ 1.23 V _{RHE}	7
	1 M NaOH		
Al-treated α -Fe ₂ O ₃ / ZnFe ₂ O ₄	100 mW cm ⁻² ,	${\sim}0.42 @ 0.40 \ V_{Ag/AgCl}({\sim}1.4 \ V_{RHE})$	8
	1 M NaOH		
$\alpha\text{-}Fe_2O_3nanorod\ /\ ZnFe_2O_4$	100 mW cm ⁻² ,	${\sim}0.30 @~ 0.20 ~ V_{Ag/AgCl} ~ ({\sim}1.2 ~ V_{RHE})$	9
	0.1 M glucose		
	+0.5 M NaOH		

References:

 A. Sheikh, A. Yengantiwar, M. Deo, S. Kelkar, S. Ogale, *Small* 2013, 9, 2091-2096.

- 2. X. Li, Y. Hou, Q. Zhao, G. Chen, Langmuir 2011, 27, 3113-3120.
- 3. D. D. Qin, C. L. Tao, RSC Adv. 2014, 4, 16968-16972.

- 4. J. H. Kim, J. H. Kim, J.-W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, J. S. Lee, *Adv. Energy Mater.* 2015, *5*, 20140193.
- J. H. Kim, Y. J. Jang, J. H. Kim, J. W. Jang, S. H. Choi, J. S. Lee, *Nanoscale* 2015, 7, 19144-19151
- 6. A. A. Tahir, K. G. U. Wijayantha, J. Photochem. Photobio. A 2010, 216, 119-125.
- Z. Luo, C. Li, D. Zhang, T. Wang, J. Gong, Chem. Commun. 2015, DOI: 10.1039/C5CC09321J.
- 8. K. J. McDonald, K. S. Choi, Chem. Mater. 2011, 23, 4863-4869.
- 9. Y. H. Guo, Y. M. Fu, Y. Liu, S. H. Shen, RSC Adv. 2014, 4, 36967-36972.