Supporting Information

Hierarchical bioglass scaffolds: introducing the "milky way" for templated biomaterials

Diego Onna, Yanina Minaberry and Matías Jobbágy*
${ }^{a}$ CONICET-INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA-Buenos Aires, Argentina

Corresponding author: jobbag@qi.fcen.uba.ar

Figure S1. TGA trace (air atmosphere) of bare Ludox ${ }^{\circledR}(\mathbf{L})$, Milk (M) and sample ML05 prepared with 19 (A), 37 (B) and $56(\mathbf{C}) \mathrm{mL}$ of milk.

Figure S2. DTA trace (air atmosphere) of bare Ludox (full line) and sample ML05 annealled for 5 at 773 K (dashed line).

Figure S3. FESEM images of cross-sectioned (perpendicular to the direction of freezing) sample ML10 before (upper row) and after (lower row) 5 h annealing at 973 K under air atmosphere.

Figure S4. FESEM images of cross-sectioned (perpendicular to the direction of freezing) sample ML10 (upper row) and ML14 (lower row) freezed at $2 \mathrm{~mm} \mathrm{~min}^{-1}$ (left column) or $4 \mathrm{~mm} \mathrm{~min}^{-1}$ (right column).

Figure S5. Pore distribution (BJH) from N_{2} adsorption-desorption isotherm (77 K) (adsorption, left; desorption, right) of sample ML10 annealed 5 h at 773 K .

Figure S6. Pore distribution (BJH) from N_{2} adsorption-desorption isotherm (77 K) (adsorption, left; desorption, right) of sample ML10 annealed 5 h at 873 K .

Figure S7. Pore distribution (BJH) from N_{2} adsorption-desorption isotherm (77 K) (adsorption, left; desorption, right) of sample ML10 annealed 5 h at 973 K .

Table S1. Atomic percentage estimated from EDS probe for sample ML10 inmersed in SBF at $37^{\circ} \mathrm{C}$ for increasing times.

Exposure time $/ \mathbf{h}$	$\mathbf{S i}$	\mathbf{P}	$\mathbf{C a}$	$\mathbf{N a}$
0	94,8	1,5	2,6	1,1
4	96,6	1,1	0,9	1,4
24	75,9	9,4	12,7	1,9

Figure S8. EDS spectra of sample ML exposed at $37^{\circ} \mathrm{C}$ to SBF for incresing periods.

