SUPPORTING INFORMATION

Decorating graphene/nanogold with dextran-based polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors

Abderrahmane Boujakhrout,^a Alfredo Sánchez,^a Paula Díez,^a Sandra Jimenez,^a Paloma Martínez-Ruiz,^b Miriam Peña-Álvarez,^c José M. Pingarrón, *^{a,d} Reynaldo Villalonga *^{a,d}

^aDepartment of Analytical Chemistry, ^bDepartment of Organic Chemistry I & ^cDepartment of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid Spain. Fax: +34 913944329; Tel: +34 913944315; E-mail: pingarro@quim.ucm.es, rvillalonga@quim.ucm.es

Figure 1S. ¹H-RMN spectra of dextran (A) and dextran-cysteamine (B).

Figure 2S. Electrochemical impedance spectra obtained at a glassy carbon electrode before (a) and after coating with Dex-Au-Sil-rGO (b) and further immobilization of tyrosinase (c), in 0.1 M KCl solution containing 5 mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ (1:1).

Figure 3S. Effect of time of storage at 4°C on the amperometric response of the biosensor.

Electrode	Linear Range (M)	Limit of	Sensitivity
		Detection (M)	(mA·M ⁻¹ / A·M ⁻¹ ·cm ⁻²)
Tyr-Au/PBA-GO/SPE ¹	8.3x10 ⁻⁸ - 2.3x10 ⁻⁵	2.4x10 ⁻⁸	160 / 5.16
Tyr-GR–SP/ GCE ²	1x10 ⁻⁹ - 1.7x10 ⁻⁵	2.3x10 ⁻¹⁰	-
Tyr/TNT/GNPs/GCE ³	3x10 ⁻⁷ - 1.1x10 ⁻⁴	5.5x10 ⁻⁸	150 / 2.14
Tyr/GR-chitosan/GCE ⁴	$1 \times 10^{-6} - 4 \times 10^{-4}$	7.5x10 ⁻⁷	69 / 0.99
Tyr/PAMAM- rGO/GCE ⁵	1x10 ⁻⁸ - 2.2x10 ⁻⁵	6x10-9	424 / 6.06
Tyr/rGO/SPE ⁶	2x10 ⁻⁶ -1.6x10 ⁻⁵	1x10 ⁻¹¹	89.8 / -
Tyr/CMC-rGO/GCE ⁷	2x10 ⁻⁶ -5.6x10 ⁻⁵	2x10 ⁻¹⁰	270 / 3.86
Tyr/Dex-Au-Sil-rGO/GCE (this work)	1x10 ⁻¹⁰ - 1.2x10 ⁻⁷	4x10 ⁻¹¹	45900 / <mark>656</mark>

 Table 1S. Analytical properties of graphene-based tyrosinase biosensors for catechol.

Tyr: tyrosinase; Au: Au nanoparticles; PBA: 1-pyrenebutanoic acid; GO: graphene oxide; SPE: screenprinted electrode; GR: graphene; SP: silk peptide; TNT: TiO₂ nanotubes; GNPs: graphene nanoplatelets; GCE: glassy carbon electrode; PAMAM: PAMAM G-4 dendrimer; rGO: reduced graphene oxide; CMC: carboxymethyl cellulose; Dex: dextran; Sil: 3-mercaptopropyl trimethoxysilane.

References

- 1 W. Song, D.W. Li, Y.T. Li, Y. Li, Y.T. Long, Biosens. Bioelectron., 2011, 26, 3181.
- 2 Y. Qu, M. Ma, Z. Wang, G. Zhan, B. Li, X. Wang, H. Fang, H. Zhang, C. Li, *Biosens. Bioelectron.*, 2013, 44, 85.
- 3 X. Liu, R. Yan, J. Zhu, J. Zhang, X. Liu, Sensor. Actuat. B Chem., 2015, 209, 328.
- 4 H. Yin, Q. Zhang, Y. Zhou, Q. Ma, T. Liu, L. Zhu, S. Ai, *Electrochim. Acta*, 2011, 56, 2748.
- 5 E. Araque, R. Villalonga, M. Gamella, P. Martinez-Ruiz, J. Reviejo, J. M. Pingarron, J. Mater. Chem. B, 2013, 1, 2289.
- 6 L. Baptista-Pires, B. Pérez-López, C. C. Mayorga-Martinez, E. Morales-Narváez, N. Domingo, M. J. Esplandiu, F. Alzina, C. M. Sotomayor-Torres, A. Merkoçi; *Biosens. Bioelectron.*, 2014, 61, 655.
- 7 E. Araque, R. Villalonga, M. Gamella, P. Martinez-Ruiz, A. Sanchez, V. Garcia-Baonza, J. M. Pingarron, *ChemPlusChem*, 2014, **79**, 1334.